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1 INTRODUCTION
Persistent collective communication [3] became a feature of the
MPI standard in version 4.0 and first implementations are available
in various libraries such as MPICH, OpenMPI, and MPC [1].

We improve our existing implementation of persistent collec-
tive communication of MPI allreduce, reduce_scatter_block, and
allgather [4] and extend it to blocking communication. In this im-
plementation of persistent collective communication a complex
algorithmic setup is performed in the initialisation phase of the
communication. If the optimal algorithm is repeatedly executed
the expensive initialisation is amortised, making the approach well
suited to situations where communication algorithms with exactly
the same parameters are repeated regularly.

An example of a code with changing message sizes between
calls of otherwise identical communication is CP2K [5]. Typically
the blocking communication interface is called for these applica-
tions. Our contribution covers this case: we initialise algorithms
for different message sizes at the time of the MPI communicator
creation. The creation has to be called rarely only, in order to allow
for compensation of the initialisation’s execution time. Then for
the actual communication call the required algorithm is selected
from the prepared ones and adapted as necessary (with padding,
for example).

A second application of our blocking communication imple-
mentation is in legacy codes that allow algorithmically the call of
persistent collective communication, but with changes in the code.

2 THE ALGORITHMS
The base algorithms upon which the present work is built are
described in [4]. Allreduce is implemented in three phases: re-
duce_scatter followed by allreduce and allgather. As an improve-
ment from our previous work in the parameter estimation memory
copies of the algorithm are considered. This has the consequence
that for one MPI task per socket (node) recursive exchange has
preference over cyclic shift. Furthermore the use of memory copies
has been minimised. The resulting algorithms are similar to the
ones of Ruefenacht [6] and Rabenseifner [7] for short and long
messages, respectively. For long messages the algorithms are most
similar for 2𝑛 tasks.
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n0 n1 n2 n3
STEP 1 FRAC 0
STEP 1 FRAC 1 SENDTO 2
STEP 1 FRAC 0 RECVFROM 2 REDUCEFROM 0
STEP 1 FRAC 1
STEP 1 FRAC 0
STEP 1 FRAC 1

STEP 2 FRAC 0
STEP 2 FRAC 1
STEP 2 FRAC 0 SENDTO 1 REDUCEFROM 4
STEP 2 FRAC 1
STEP 2 FRAC 0 RECVFROM 1
STEP 2 FRAC 1

STEP 3 FRAC 0
STEP 3 FRAC 1
STEP 3 FRAC 0 SENDTO 2
STEP 3 FRAC 1 RECVFROM 2
STEP 3 FRAC 0
STEP 3 FRAC 1

Figure 1: Algorithmic scheme allreduce 4 nodes with 1 MPI
task per node, left: nodes 𝑛0 to 𝑛3, right: script for node 0

Figure 1 shows the algorithmic scheme for a four nodes and one
task per node allreduce with a radix of two, a partial reduce_scatter,
allreduce, and allgather. On the left of the figure is a graphical view
for nodes 𝑛0 to 𝑛3. Grey cells represent data being processed, blue
arrows show data transferred between nodes, and red arrows re-
duction operations within the nodes. There are three steps from top
to bottom and data is transferred before reductions are performed.
The message size of sendbuf and recvbuf is two boxes. The top
two boxes of each six boxes column are the send buffer, the middle
two boxes the receive buffer and the bottom two boxes a temporary
buffer. On the right of the figure the scheme is shown as a script for
node zero, which is very similar to the script generated internally
by the library which is processed further to bytecode [4], which is
executed in the actual collective call. Each line corresponds to its
box in the 𝑛0 column (left). As already mentioned, there are three
steps, indicated by the keyword STEP. The keyword FRAC describes
the memory chunk which is processed on, the first two lines 0-1
are the send buffer, the second two lines 0-1 the receive buffer and
the third two lines 0-1 a temporary buffer. The keywords RECVFROM
and SENDTO describe a non-blocking receive and send operation, re-
spectively, and the number following is the partner’s MPI rank. For
every step, sends and receives are scheduled followed by a waitall.
The step is finalised with a possible reduction operation, keyword
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REDUCEFROM, where the number is the absolute line number starting
from zero.

During the set up of the algorithms in the initalisation phase,
bytecode is generated which encodes (mostly) computation,
MPI_Irecv, MPI_Isend, and MPI_Waitall. For every communica-
tor creation the initalisation is repeatedly executed for certain mes-
sage sizes. When the blocking collective communication is called,
the most suitable message size from the stored algorithms is chosen
and all instructions in the bytecode are adapted to this message
size. Since the number of algorithms stored is limited the ideal
adaptation might not be possible. Therefore, for the allreduce oper-
ation, padding might be required, which has the disadvantage of
unnecessary data being processed. There is also the overhead due
to the algorithm selection and the adaptation of the bytecode for
the particular message size.

Allreduce, reduce_scatter_block, and allgather are provided as
blocking versions. This list may be extended; however, the versions
of the calls with variable vector length e.g., reduce_scatter and
allgatherv cannot be accommodated easily. The reason for this is
that they do not have one parameter as message length but many.
We see as only one option for an implementation a padding up to
equal message length which would introduce a significant overhead
due to additional memory copies.

3 IMPLEMENTATION
All collective communication routines are implemented on top of
MPI point-to-point communication. In order to allow for a simple
plug in to applications we use the MPI profiler hook. For the pa-
rameter ranges where our implementation does not outperform
the underlying MPI library, the original collective communication
might be called. Our blocking communication is activated only
when a particular environment variable is set, and codes which
call communicator creations and destructions frequently are not
penalised. An alternative solution (future work) would be to pass a
specific value to the MPI_Info argument when the communicator
is created, similar to what is suggested in [2].

Our implementation is publicly available at
https://github.com/eth-cscs/ext_mpi_collectives.

4 BENCHMARKS
On an HPE Cray EX system with 64-core AMD EPYC 7742 proces-
sors, using one MPI task per node, for the numbers of tasks and
message sizes investigated our blocking implementation almost
always outperforms HPE (Cray) MPI (Fig. 2, 3). We do not observe
any significant performance penalty if the message sizes were cho-
sen such that padding is applied, which in any case, is a few bytes
only. Our persistent implementation is even faster. Table 1 shows
the number of communication ports (the number of MPI_Irecv -
MPI_Isend pairs acting simultaneously on the node) determined
for different message sizes together with the timings. The ‘num
ports’ indicate the number of communication ports used in the
algorithm, e.g., (7 1) are seven ports in the first step and one port in
the second step, both are allgather steps. Negative numbers for the
ports describe reduce_scatter steps, e.g., (-7 1 7) is a reduce_scatter
with seven ports an allreduce with one port and an allgather with
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Figure 2: Allreduce on 128 nodes (top) and 16 nodes (bottom)
with 1 MPI task per node, HPE Cray EX
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Figure 3: Reduce_scatter_block (top) and allgather (bottom)
on 16 nodes with 1 MPI task per node, HPE Cray EX

seven ports. Both examples allow for the execution of the recursive
exchange algorithm if applied to 16 nodes.

Figure 4 shows the performance comparison for 64 MPI tasks
on a single node, on a Cray XC40 system (Aries network) with
Two Intel Xeon E5-2695 v4 running at 2.10GHz (2 x 18 cores). Our
persistent allreduce communication outperforms Cray MPI for mes-
sage sizes larger than 104 bytes. For message sizes larger than 105
bytes also our blocking allreduce communication outperforms Cray
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Table 1: Allreduce on 16 nodes with 1 task per node, HPE
Cray EX

message size / bytes num ports time HPE MPI / `𝑠 time / `𝑠
8 8 1 1.60 · 101 1.73 · 101
.
.
.

.

.

.

.

.

.

.

.

.

8192 7 1 5.33 · 101 3.18 · 101
16384 -7 1 7 5.75 · 101 3.71 · 101
32768 -7 1 7 6.37 · 101 3.96 · 101
65536 -7 1 7 7.96 · 101 4.73 · 101
131072 -1 -7 7 1 1.12 · 102 8.10 · 101
262144 -3 -3 3 3 1.64 · 102 9.56 · 101
524288 -1 -7 7 1 2.91 · 102 1.83 · 102
1048576 -1 -1 -3 3 1 1 5.60 · 102 2.82 · 102
2097152 -1 -1 -3 3 1 1 1.02 · 103 5.12 · 102
4194304 -1 -1 -1 -1 1 1 1 1 1.99 · 103 9.91 · 102

.

.

.

.

.

.

.

.

.

.

.

.

134217728 -1 -1 -1 -1 1 1 1 1 8.26 · 104 3.21 · 104
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Figure 4: Allreduce on 1 node with 64 MPI tasks per node,
Cray XC40
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Figure 5: Allreduce on 16 nodes with 64 MPI tasks per node,
Cray XC40

MPI. For 16 nodes with 64 MPI tasks per node (Fig. 5) the over-
head of our approach leads to higher execution times for short
messages compared to Cray MPI, while for medium size messages
and long messages Cray MPI is outperformed. OpenMPI 4.1.5 is
always slower than Cray MPI. However, with the current software
on Slingshot (HPE Cray EX with libfabric 1.15.2.0), persistent (and
blocking) allreduce on multiple tasks per node on multiple nodes
does not entirely outperform the vendor’s blocking implementation.
Our library and the underlying HPE MPI and libfabric libraries are
still under development for better performance of the multiple tasks
on multiple nodes case.
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Figure 6: Allreduce initialisation on 16 nodes with 1 MPI
task per node, HPE Cray EX

Figure 6 shows the cost for the allreduce initialisation on the HPE
Cray EX system. For short messages it is two orders of magnitude
higher than the actual execution of allreduce. For long messages
initialisation and execution consume approximately the same time.
If our blocking collectives implementation is activated then ten
calls to the initialisation routines per collective and communicator
creation are performed.

5 CONCLUSIONS
We have introduced an implementation of blocking collective com-
munication based on algorithms for persistent collective commu-
nication. This implementation outperforms HPE/Cray MPI, when
communicator creation and destruction are not called frequently.
However, only a subset of blocking communication patterns can be
supported in this way. Whenever possible the even faster persistent
collective communication routines introduced in [4] and slightly
improved in this contribution should be utilised. Non-blocking col-
lective communication could be implemented analogously to our
blocking routines, with the caveat that every open request handle
would require a separate temporary memory buffer.
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Motivation

•MPI persistent collective communication [1, 2] extends the MPI in-

terface but many codes call collective communications with varying

message sizes between calls → also blocking interface required

•When communicator-create functions are rarely called they can be

used for the setup of the algorithms

•We focus on the operations allreduce, reduce_scatter_block and all-

gather

Contributions

• Improved parameter selection for persistent collective communication

compared to our previous contribution [2], memcopies are avoided

•Alternative implementation for blocking collective communication util-

ising communicator create functions for the setup of the algorithms

Algorithms

•Allreduce in three phases: reduce_scatter, allreduce, and allgather

•Algorithmic choice in initialisation routine (based on benchmark at

installation time of the library)

•Algorithms close to Ruefenacht [3] and Rabenseifner [4] for short and

long messages, respectively

• Script of the algorithm translated to bytecode

n0 n1 n2 n3
STEP 1 FRAC 0

STEP 1 FRAC 1 SENDTO 2

STEP 1 FRAC 0 RECVFROM 2 REDUCEFROM 0

STEP 1 FRAC 1

STEP 1 FRAC 0

STEP 1 FRAC 1

STEP 2 FRAC 0

STEP 2 FRAC 1

STEP 2 FRAC 0 SENDTO 1 REDUCEFROM 4

STEP 2 FRAC 1

STEP 2 FRAC 0 RECVFROM 1

STEP 2 FRAC 1

STEP 3 FRAC 0

STEP 3 FRAC 1

STEP 3 FRAC 0 SENDTO 2

STEP 3 FRAC 1 RECVFROM 2

STEP 3 FRAC 0

STEP 3 FRAC 1

Algorithmic scheme allreduce 4 nodes with 1 MPI task per node, left: nodes n0 to n3,

right: script for node 0

• Blocking collectives: initialisation of algorithms for several message

sizes when communicator creation

•Adaptation of the bytecode of closest message size when blocking col-

lectives are called

Implementation

•On top of MPI point-to-point communication

• Plug in to applications with the MPI profiler hook

• Blocking communication activated with environment variable

• Prototype library which implements part of the persistent collective

communication of the MPI 4.0 standard and blocking collective com-

munication

https://github.com/eth-cscs/ext_mpi_collectives

Benchmarks

•HPE Cray EX system with 64 core AMD EPYC 7742 processors
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Allreduce on 128 nodes (top) and 16 nodes (bottom) with 1 MPI task per node, HPE

Cray EX
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Reduce_scatter_block (top) and allgather (bottom) on 16 nodes with 1 MPI task per

node, HPE Cray EX

Table 1: Allreduce on 16 nodes with 1 task per node, HPE Cray EX

message size / bytes num ports time HPE MPI / µs time / µs

8 8 1 1.60 · 101 1.73 · 101
...

...
...

...
8192 7 1 5.33 · 101 3.18 · 101

16384 -7 1 7 5.75 · 101 3.71 · 101

32768 -7 1 7 6.37 · 101 3.96 · 101

65536 -7 1 7 7.96 · 101 4.73 · 101

131072 -1 -7 7 1 1.12 · 102 8.10 · 101

262144 -3 -3 3 3 1.64 · 102 9.56 · 101

524288 -1 -7 7 1 2.91 · 102 1.83 · 102

1048576 -1 -1 -3 3 1 1 5.60 · 102 2.82 · 102

2097152 -1 -1 -3 3 1 1 1.02 · 103 5.12 · 102

4194304 -1 -1 -1 -1 1 1 1 1 1.99 · 103 9.91 · 102
...

...
...

...
134217728 -1 -1 -1 -1 1 1 1 1 8.26 · 104 3.21 · 104
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• Cray XC40 system with Two Intel Xeon E5-2695 v4 running at

2.10GHz (2 x 18 cores)
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Allreduce on 1 node with 64 MPI tasks per node, Cray XC40
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Allreduce on 16 nodes with 64 MPI tasks per node, Cray XC40

• Problem: Low performance of our library for multiple nodes with mul-

tiple MPI tasks per node on the HPE Cray EX system
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Allreduce initialisation on 16 nodes with 1 MPI task per node, HPE Cray EX

Conclusions

•Our blocking collective routines mostly outperform the reference li-

brary HPE MPI

•Our persistent collective communication routines are faster than our

blocking counterparts

•Whenever possible persistent collective communication should be used

Future work

Blocking collectives for multiple MPI tasks per node and GPU support
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