
Enabling Non-Destructive Testing of the Statuses of Multiple
Requests

William R. Williams

Technische Universität Dresden

Dresden, Germany

william.williams@mailbox.tu-

dresden.de

Marc-André Hermanns

RWTH Aachen University

Aachen, Germany

hermanns@itc.rwth-aachen.de

Joachim Jenke

RWTH Aachen University

Aachen, Germany

jenke@itc.rwth-aachen.de

ABSTRACT
We propose extending the MPI interface to allow the non-

destructive test of multiple statuses in a manner that is guaranteed

to mimic the progress and fairness behavior of the correspond-

ing MPI_WaitXXX and MPI_TestXXX functions: MPI_Request_get_-

status_all, MPI_Request_get_status_some, and MPI_Request_-

get_status_any. We show how this can simplify tool code and

allow safe layering of tools that wish to wrap the wait and test

families of MPI functions.

ACM Reference Format:
William R. Williams, Marc-André Hermanns, and Joachim Jenke. 2023.

Enabling Non-Destructive Testing of the Statuses of Multiple Requests.

In Proceedings of EuroMPI 2023 (EuroMPI ’23). ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The existence of the PMPI interface since the very beginning of

the Message Passing Interface (MPI) [2] has led to an abundance

of performance and correctness tools being available to developers

usingMPI to aid in their development process. This high availability

of tools has most likely impacted the wide acceptance of MPI. Such

tools strive to perturb the original application behavior as little as

possible, meaning that performance tools would strive to keep

the performance overhead of measurements to a minimum. In

contrast, correctness tools strive to keep as much of the original call

sequences within the MPI library. As part of their measurements,

tools often track non-blocking communication requests to retain

a consistent view of ongoing operations for the user. As part of

such tracking, these tools may need to check the state of an active

request and its corresponding status non-destructively. The use

of non-destructive tests is often (but not exclusively) connected

to identifying the one or more requests the tool must act on (e.g.,

look up tracking information) while using the active request handle

as a lookup key. While as of version 4.0 of the MPI standard [2],

MPI allows users to perform destructive wait or test operations on

multiple pending requests; it does not allow similar non-destructive

status-checking operations except on individual requests.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EuroMPI ’23, September 11-13, 2023, Bristol, UK
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

int MPI_Testsome(int incount, MPI_Request req[], int*

outcount, int* indices, MPI_Status* statuses[])↩→

{

for(int i = 0; i < incount; i++) {

saved_requests[i] = tool_request_data(req[i]);

}

int ret = PMPI_Testsome(incount, req, outcount,

indices, statuses);↩→

for(int i=0; i < *outcount; i++) {

orig_req = saved_requests[indices[i]];

status = statuses[i];

process_deactivated_request(orig_req, status);

}

return ret;

}

Figure 1: Example of saving requests pre-call when wrapping
MPI_Testsome without MPI_Request_get_statusXXX available.

We, therefore, propose new API functions that allow this non-

destructive status checking: MPI_Request_get_status_all, MPI_-

Request_get_status_any, and MPI_Request_get_status_some.

2 MOTIVATION
The absence of functions that allowed the non-destructive testing

of status for multiple requests causes several problems, in particular

for developers who wish to use the PMPI interface in order to wrap

destructive multiple-request completion functions.

At the moment tools like Score-P [4] need to save all requests

prior to calling the PMPI layer to process the request after comple-

tion as shown in Figure 1.

P
n

MPI [5] has long been a tool to assist in correctly implementing

the nested interception of MPI functions. A stack of tools calling,

for example, MPI_Testany, will call each other in a well-defined

order, eventually calling some set of PMPI functions that should be

equivalent to MPI_Testany–possibly MPI_Testany itself, possibly an

equivalent sequence of MPI_Test and/or MPI_Request_get_status

calls. Nevertheless, each tool must take care to preserve any request

that it might be interested in post-call.

The previous case shows a more general problem: within tool

code wrapping a MPI_WaitXXX or MPI_TestXXX call, it is guaran-

teed that if the status for a request is of interest and thus valid

post-PMPI-call, the request itself has been invalidated by the call.

https://orcid.org/0000-0001-5806-3176
https://orcid.org/0000-0003-3895-7791
https://orcid.org/0000-0003-0640-8966
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EuroMPI ’23, September 11-13, 2023, Bristol, UK William R. Williams, Marc-André Hermanns, and Joachim Jenke

This, in turn, complicates any tool which tracks the cancellation

of requests or any other information that is dependent on both

the request object and the status object. In general, it is impossible

for both the statuses resulting from MPI_WaitXXX or MPI_TestXXX

and the requests corresponding to those statuses to be observed

simultaneously.

One might emulate a MPI_WaitXXX or MPI_TestXXX call via it-

eration over the array of requests with MPI_Request_get_status,

followed by appropriate calls to MPI_Wait or MPI_Test on individual

completed requests in that array.

However, a tool performing this emulation does not necessarily

provide the same progress or, more importantly, in the case of MPI_-

Waitsome/MPI_Testsome, fairness guarantees as the original call.

This means that introducing a tool that performs such emulation

can alter the behavior of the original program in unforeseen ways.

Such imprecision is particularly undesirable in correctness tools,

such as MUST [3]. Finally, the absence of these three proposed

functions is an apparent asymmetry in the standard, which this

proposal corrects.

3 PROPOSED SOLUTION
We propose the addition of MPI_Request_get_status_all, MPI_-

Request_get_status_any, and MPI_Request_get_status_some to

the MPI 4.1 Standard. These new functions allow for the non-

destructive examination of multiple statuses, and allow a tool to

ensure that the implementation is allowed the freedom to perform

internal optimization in the same manner that it may for the corre-

sponding wait and test functions. Further, by replacing the external

iteration of requests with internal iteration, tool code becomes

more straightforward and easier to understand while retaining the

original progress behavior of the application with the tool. Also,

describing the form and effects of these iterations in the MPI stan-

dard help avoid the case where a well-meaning but misguided tool

might attempt to write a wrapper that preserves both the behavior

of the unwrapped call and the status of all requests completed by

the call, but instead substantially alters the behavior of the call (and

thus the program) in an unexpected way.

3.1 MPI_Request_get_status_any

We propose that MPI_Request_get_status_any should be equiva-

lent to calling MPI_Request_get_status on all active requests in
the input array in an arbitrary order consistent with MPI_Testany

and MPI_Waitany. Inactive requests, including null requests, would

trivially return 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 from MPI_Request_get_status, and

are skipped in this processing. This ensures that MPI_Request_-

get_status_any will always either return 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 or attempt

progress, possibly both. This is symmetric with the guarantees

provided by MPI_Waitany and MPI_Testany, while accounting for

the possibility that MPI_Request_get_status_any may be called

repeatedly on the same array of requests, potentially completing

but not freeing any of the active requests in the input array.

Note that MPI_Waitany and MPI_Testany, because they complete

and free a request if they return 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 , are guaranteed not to
be called repeatedly with the same input data: any call that returns

𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 will alter the input array irrevocably.

3.2 MPI_Request_get_status_all

We propose that MPI_Request_get_status_all should work in an

obvious manner: it will either attempt progress on at least one of

the requests in the input array, or it will return 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 as a

result of all input requests being completed. Thus, repeated calls to

MPI_Request_get_status_all will eventually return 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒

provided that matching sends or receives, as appropriate for the

requests in the input array, are eventually posted. Congruent with

the guarantees given by MPI_Request_get_status_any, the input

array itself will not be altered, i.e., none of the requests will be

freed in the process. If all input requests are inactive or null, as with

MPI_Waitall and MPI_Testall, MPI_Request_get_status_allwill

return immediately with 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 .

3.3 MPI_Request_get_status_some

Finally, we propose that MPI_Request_get_status_some should

present, conceptually, the same fairness guarantees as its coun-

terparts MPI_Waitsome and MPI_Testsome, namely the following:

If a request for a receive repeatedly appears in a list of

requests passed to MPI_Waitsome, MPI_Testsome, or

MPI_Request_get_status_some and a matching send

has been posted, then the receive will eventually suc-

ceed unless the send is satisfied by another receive;

and similarly for send requests.

It should otherwise function similarly to MPI_Waitsome and MPI_-

Testsome: it will return in 𝑜𝑢𝑡𝑐𝑜𝑢𝑛𝑡 the number of completed re-

quests, with the corresponding statuses and indices of the original

requests in output arrays. Note that while an input array consist-

ing entirely of inactive or null requests should return immediately,

𝑜𝑢𝑡𝑐𝑜𝑢𝑛𝑡 in this case will be MPI_UNDEFINED. 𝑜𝑢𝑡𝑐𝑜𝑢𝑛𝑡 and its cor-

responding output arrays should only include the active requests

that have been completed.

4 USAGE
To illustrate the benefits of these new functions, we present ex-

amples of tool code that can be simplified using the new MPI_-

Request_get_statusXXX functions.

4.1 Code simplification
Without MPI_Request_get_status_some, a tool that wished to

wrap MPI_Testsome and inspect statuses might take the incorrect

approach shown in Figure 2.

Such a wrapper function is faulty because by the time PMPI_-

Testsome is called additional requests might have reached com-

pletion and will be reported as completed by the MPI_Testsome

call. These additionally completed requests will lead to unexpected

results for the tool.

The modified version in Figure 3, still using MPI_Request_get_-

status, provides consistent results. Note that, because each MPI_-

Request_get_status and MPI_Wait call may make progress, Fig-

ure 3 is not equivalent to the unmodified program—more requests

may be completed when the tool is present.

With MPI_Request_get_status_some, we can instead use the

approach in Figure 4.

Enabling Non-Destructive Testing of the Statuses of Multiple Requests EuroMPI ’23, September 11-13, 2023, Bristol, UK

int MPI_Testsome(int incount, MPI_Request req[], int*

outcount, int* indices, MPI_Status* statuses[])↩→

{

// allocate temp_statuses array of statuses,

size=incount↩→

int flag=0;

for(int i=0; i < incount; i++) {

PMPI_Request_get_status(req[i], &flag,

temp_statuses[i]);↩→

// save status along with each request

}

PMPI_Testsome(incount, req, outcount, indices,

statuses);↩→

// now post-process saved requests and statuses based

on result of Testsome↩→

return ret;

}

Figure 2: An example of faulty wrapping of MPI_Testsome.

int MPI_Testsome(int incount, MPI_Request req[], int*

outcount, int* indices, MPI_Status* statuses[])↩→

{

MPI_Status temp_status;

for(int i=0; i < incount; i++) {

int flag=0;

PMPI_Request_get_status(req[i], &flag, temp_status);

if (flag) {

// process request completion

PMPI_Wait(req, statuses+*outcount);

indices[*outcount]=i;

*outcount++;

}

}

return ret;

}

Figure 3: An example of semantic-altering wrapping of MPI_-
Testsome.

Provided that MPI_Request_get_status_some will complete the

same requests as MPI_Testsome, we now have the ability to perform

the non-destructive query first, and then have PMPI_Test trivially

complete and free each completed request, as above.

With the new proposed functions, old tool code, such as in

Figure 1, can be replaced with new tool code as shown in Figure 5.

This is in particular relevant when attempting to detect whether

and when a request has been cancelled: if the necessary data about

the original request has not been preserved, a tool has no way of

knowing which request has been cancelled when examining the

output statuses from MPI_WaitXXX or MPI_TestXXX.

int MPI_Testsome(int incount, MPI_Request req[], int*

outcount, int* indices, MPI_Status* statuses[])↩→

{

int ret = PMPI_Request_get_status_some(incount, req,

outcount, indices, statuses);↩→

for(int i=0; i < *outcount; i++){

// tool code to handle the successful test on

req[indices[i]]↩→

PMPI_Test(req[indices[i]], &flag, MPI_STATUS_IGNORE);

}

return ret;

}

Figure 4: Use of MPI_Request_get_status_some to simply and
correctly inspect statuses in a wrapper for MPI_Testsome

int MPI_Testsome(int incount, MPI_Request req[], int*

outcount, int* indices, MPI_Status* statuses[])↩→

{

int ret = PMPI_Request_get_status_some(incount, req,

outcount, indices, statuses);↩→

for(int i=0; i < *outcount; i++) {

int flag = 0;

orig_req = req[indices[i]];

process_deactivated_request(orig_req, statuses[i]);

PMPI_Test(orig_req, &flag, MPI_STATUS_IGNORE);

}

return ret;

}

Figure 5: Simplified MPI_Testsome wrapper with no need
to save requests pre-call, via transformation to use MPI_-
Request_get_status_some and MPI_Test.

4.2 Nested tools
It is important to remember when considering these proposed new

functions that a tool substituting MPI_Request_get_statusXXX calls

for MPI_TestXXX or MPI_WaitXXX calls is in fact altering the MPI

calls that are visible to other tools that lie between them and the

actual MPI implementation, whether this nesting is performed by

P
n

MPI, the forthcoming QMPI interface, or any other mechanism.

If, as in Figure 5, a tool replaces MPI_Testsome with MPI_Request_-

get_status_some and individual MPI_Test calls, another tool would

see request completions via those calls to MPI_Test, not as part of

the original application’s MPI_Testsome. This is not a novel concern

for nested tool usage; cases such as the replacement of collective op-

erations with an equivalent sequence of point-to-point operations,

such as in the work of Zhang et al. [6], have been considered critical

motivating use cases for the development of QMPI [1]. However,

the MPI_Request_get_statusXXX functions particularly encourage

this sort of substitution and require corresponding care in a multi-

tool environment. In a wrapper as shown in Figure 4, the tool

already knows that the request is completed. Therefore, the call to

EuroMPI ’23, September 11-13, 2023, Bristol, UK William R. Williams, Marc-André Hermanns, and Joachim Jenke

PMPI_Test could also be replaced with PMPI_Wait telling a poten-

tial other tool, that the request will certainly be completed by this

call. If the nested tool is only interested in the actual completion of

requests, this information would be sufficient and the nested tool

might not even intercept the MPI_Request_get_statusXXX calls.

5 CONCLUSION
The proposed additions to the MPI 4.1 Standard will simplify tool

and library code and allow internal layering within implemen-

tations, while ensuring consistency across non-destructive and

destructive checks of the status of multiple requests.

REFERENCES
[1] Elis, B., Yang, D., and Schulz, M. Qmpi: A next generation mpi profiling interface

for modern hpc platforms. In Proceedings of the 26th European MPI Users’ Group
Meeting (2019), pp. 1–10.

[2] Forum, M. MPI 4.0 Standard, 2022.
[3] Hilbrich, T., Schulz, M., de Supinski, B. R., and Müller, M. S. Must: A scalable

approach to runtime error detection inmpi programs. In Tools for High Performance
Computing 2009: Proceedings of the 3rd International Workshop on Parallel Tools
for High Performance Computing, September 2009, ZIH, Dresden (2010), Springer,

pp. 53–66.

[4] Knüpfer, A., Rössel, C., Mey, D. a., Biersdorff, S., Diethelm, K., Eschweiler,

D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al. Score-p: A joint

performance measurement run-time infrastructure for periscope, scalasca, tau,

and vampir. In Tools for High Performance Computing 2011: Proceedings of the
5th International Workshop on Parallel Tools for High Performance Computing,
September 2011, ZIH, Dresden (2012), Springer, pp. 79–91.

[5] Schulz, M., and De Supinski, B. R. P
𝑛
mpi tools: A whole lot greater than the sum

of their parts. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing
(2007), pp. 1–10.

[6] Zhang, J., Zhai, J., Chen, W., and Zheng, W. Process mapping for mpi collective

communications. In Euro-Par 2009 Parallel Processing: 15th International Euro-
Par Conference, Delft, The Netherlands, August 25-28, 2009. Proceedings 15 (2009),
Springer, pp. 81–92.

	Abstract
	1 Introduction
	2 Motivation
	3 Proposed Solution
	3.1 MPI_Request_get_status_any
	3.2 MPI_Request_get_status_all
	3.3 MPI_Request_get_status_some

	4 Usage
	4.1 Code simplification
	4.2 Nested tools

	5 Conclusion
	References

