
MPI Advance : Open-Source Message Passing Optimizations

AMANDA BIENZ∗, Dept. of Computer Science

Univ. of New Mexico, USA

DEREK SCHAFER∗, Center for Advanced Research Computing

Univ. of New Mexico, USA

ANTHONY SKJELLUM∗, Dept. of Computer Science

Tennessee Technological University, USA

The large variety of production implementations of the message passing interface (MPI) each provide unique and varying underlying
algorithms. Each emerging supercomputer supports one or a small number of system MPI installations, tuned for the given architecture.
Performance varies with MPI version, but application programmers are typically unable to achieve optimal performance with local
MPI installations and therefore rely on whichever implementation is provided as a system install. This paper presents MPI Advance, a
collection of libraries that sit on top of MPI, optimizing the underlying performance of any existing MPI library. The libraries provide
optimizations for collectives, neighborhood collectives, partitioned communication, and GPU-aware communication.

CCS Concepts: • Networks → Network performance evaluation; Network performance modeling; • Computing methodolo-
gies → Massively parallel algorithms.

ACM Reference Format:
Amanda Bienz, Derek Schafer, and Anthony Skjellum. 2023. MPI Advance : Open-Source Message Passing Optimizations. 1, 1
(September 2023), 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A large variety of message-passing interface (MPI) libraries are currently in production, including OpenMPI, MPICH,
MVAPICH, and various proprietary implementations. Each emerging supercomputer provides a system install of one or
a small number of MPI implementations, tuned to obtain optimal performance for a given architecture. While each MPI
implementation provides the standard API, underlying implementations vary drastically. As a result, the performance
of parallel applications is dependent on not only the architecture on which they are run but also the implementations
within the available system MPI install. While additional versions of MPI can be installed through package managers,
such as Spack, performance will typically be subpar in comparison to tuned system installations. In this paper, we
introduce MPI Advance1, a collection of lightweight libraries that sit on top of MPI, providing advanced algorithms and
new MPI features while also leveraging the tuned performance of the system MPI.

There are many benefits to lightweight libraries that sit on top of MPI, such as MPI Advance. The first is that the
simplicity of this approach allows users to experiment with research MPI extensions without having to edit production

∗All authors contributed equally to this research.
1https://github.com/mpi-advance

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/1234-5678-9012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/mpi-advance

2 Amanda Bienz, Derek Schafer, and Anthony Skjellum

MPI releases, allowing libraries to be portably tested across various MPI implementations and computer architectures
more directly. Such a design also allows for the creation of libraries that applications can utilize to use communication
optimizations, such as emerging algorithms for collective operations and locality-aware aggregation [3, 4, 10]. MPI
Advance also provides the opportunity for users to add new MPI methods or optimizations that are not yet available
within the MPI standard, allowing for testing within a variety of applications to gather evidence for whether new ideas
should be added to the standard. Finally, the libraries allow for implementations of new additions to the standard,
such as partitioned communication [7], to be made available to application users before system MPI installs have been
updated. The end goal of most MPI Advance libraries will be that the learning associated with creating the library can
make the transition of the library into a production MPI release more streamlined.

The remainder of this paper describes MPI Advance in detail. Section 2 outlines what libraries are currently included
within MPI Advance, along with the specific rationale for being included. Benefits and preliminary performance results
of these libraries are then described in Section 3. Finally, Section 4 provides concluding remarks.

2 MPI ADVANCE
MPI Advance provides a framework for distributing communication optimizations, including optimizations to
collective algorithms and neighborhood collectives. The codebase also provides access to algorithms that have
recently been added to the MPI standard, but are not yet provided in many system MPI installations, such as

Application

MPI Advance

System MPI

Fig. 1. Dependencies

partitioned communication and persistent collective operations. MPI Advance also provides a
library for GPU-Aware communication for heterogeneous architectures, providing the choice
for utilizing GPUDirect when available, copying data to a single CPU, or multithreading data
copied to the CPU to utilize all available cores. Finally, all MPI Advance libraries utilize the
MPIX prefix in the user-facing APIs [13, 14].

MPI Advance sits between the application and system MPI installation, as exemplified in
Figure 1. The library utilizes the MPIX-extensions, allowing for all applications to access MPI
Advance optimizations without conflict. MPI Advance then relies on the system MPI implementation for underlying
message passing.

2.1 Collective Optimizations

Collective algorithms have been optimized over multiple decades to minimize message count for small data sizes
and bytes transported for larger messages. In more recent years, architecture-aware algorithms further optimized
many collectives by distinguishing between inter- and intra- node communication, reducing message count and size
transported through the network. Further optimizations, such as topology-aware collectives, gain additional performance
by minimizing hop count. MPI Advance provides an interface for a variety of these collective implementations in which
the various algorithms are implemented on top of MPI, typically calling point-to-point communication within the
underlying MPI implementation.

Currently, the collectives in this MPI Advance library select a default algorithm, but make all implementations
publicly available so that users can select a non-default algorithm. Future work includes research into a more sophis-
ticated selection process to help choose optimal collective algorithms for a given architecture and underlying MPI
implementation. Listings 1 and 2 show how this library can be used to replace an existing all-to-allv operation inside an
MPI application.

MPI Advance : Open-Source Message Passing Optimizations 3

Listing 1. Standard

MP I _A l l t o a l l v (sendbuf , sendcounts ,
s d i s p l s , sendtype , r e cvbu f ,
r e cvcoun t s , r d i s p l s , r e cv type ,
comm) ;

Listing 2. MPI Advance

MPIX_Comm ∗ xcomm ;
MPIX_Comm_init (&xcomm , comm) ;
MP IX_A l l t o a l l v (sendbuf , sendcounts , s d i s p l s ,

sendtype , r ecvbu f , r e cvcoun t s , r d i s p l s ,
r e cv type , xcomm) ;

2.2 Persistent Neighborhood Collective Optimizations

Neighborhood collectives allow MPI to optimize sparse communication, in which each process communicates with a
subset of other processes. Persistent versions of neighborhood collectives were added to the MPI 4 standard, allowing
for all setup costs to be incurred only once in the initialization method. While standard implementations of neighbor
collectives typically consist of simply wrapping point-to-point communication, the persistent API allows for optimiza-
tions of the underlying communication, such as locality-aware aggregation. MPI Advance provides a library featuring
locality-aware optimizations to persistent neighborhood collectives.

Listing 3. Standard

MPI_Comm comm ;
MP I _D i s t _ g r aph_ c r e a t e _ ad j a c en t (

comm , n_recvs , r e cv_proc s ,
r e cv_we igh t s , n_sends ,
send_procs , send_weights ,
mpi_ info , r eo rde r , &comm) ;

MP I _Ne i g h b o r _ a l l t o a l l v (sendbuf ,
sendcounts , s d i s p l s , sendtype ,
r ecvbu f , r e cvcoun t s , r d i s p l s ,
r e cv type , comm) ;

Listing 4. MPI Advance

MPIX_Comm xcomm ;
MPIX_Request ∗ x r e qu e s t ;
MP IX_D i s t _g r aph_c r e a t e _ad j a c en t (comm ,

n_recvs , r e cv_proc s , r e cv_we igh t s ,
n_sends , send_procs , send_weights ,
mpi_ info , r eo rde r , &xcomm) ;

MP IX_Ne i g h b o r _ a l l t o a l l v _ i n i t (sendbuf ,
sendcounts , s d i s p l s , sendtype , r ecvbu f ,
r e cvcoun t s , r d i s p l s , r e cv type , xcomm ,
in fo , &x r e qu e s t) ;

MPIX_Star t (x r e qu e s t) ;
MPIX_Wait (x r eque s t , MPI_STATUS_IGNORE) ;

Persistent neighborhood collectives within this library can be used similarly to the collective operations previously
described. The neighborhood collective in Listing 3 only needs to be replaced with the persistent MPIX version in Listing
4. Currently, there is an additional locality-aware extension to the neighborhood collective that requires additional data,
namely unique indices for all values to be sent and received. These unique values allow for the neighborhood collective
to eliminate a single value from being sent between a set of nodes multiple times.

2.3 Partitioned Communication

Partitioned collective communication [8, 11], is a new, channelized approach to point-to-point communication added in
the MPI-4 standard. Partitioned point-to-point communication establishes a single match between a sender and receiver
at initialization, and supports the marking of portions of buffers (partitions), that can be transferred before the entire
message is complete. In this way, on the send side, partitioned sends allow so-called early-bird communication. On the
receive-side, partitions of the same or different sizes can be accessed as complete, prior to completion of the whole
message. In this paradigm, two-sided operations enable one-sided implementation internally, and support overlap of
communication and computation in strong-progress implementations. In situations where partitions are computed in

4 Amanda Bienz, Derek Schafer, and Anthony Skjellum

parallel, such as in fork-join parallelism with OpenMP or CUDA kernels, partitioned communication helps hide the load
imbalance of such computations and ensures that the computations and transfers have a good opportunity to overlap.

MPIPCL [7] is a component of MPI Advance that supports the complete semantics of MPI-4 partitioned point-to-point
operations with a reasonably performant interface. The architecture of MPICL introduces a progress thread in order
to move data asynchronously even when the underlying MPI implementation does not provide such a guarantee.
The semantics of initialization, initiation, and the Pready/Parrived partition operations are fully supported. Simple
partitioning strategies are also supported. Significantly, MPICL can port on top of anyMPI-3.0 compliant implementation
that offers MPI_Thread_multiple modes of execution. The audience for these APIs are early adopters of MPI+X modes
of operation and implementers of partitioned operations in production MPI middleware. Additional extensions involving
collective communication are being proposed for MPI-5 [9]. Similar to the point-to-point operations, a layered-library
implementation of these collective APIs is being developed for MPIPCL [1] and will soon be available for public use.

2.4 Heterogeneous Architectures

Emerging heterogeneous architectures often require applications to communicate data between GPU memories. There
are many different paths of data transfer, including using GPUDirect to move data directly from the GPU memory to
the NIC, copying all data to a CPU before performing standard MPI communication between GPUs, copying portions of
the data to each of the available CPU cores to distribute communication, or some combination of these protocols. MPI
Advance supports CUDA-aware and ROCM-aware communication, providing implementations for each of the various
protocols mentioned above. To utilize GPU-aware communication, this MPI Advance library must be compiled with
either the CUDA or HIP flags. Users can then call MPI operations, such as collectives and neighborhood collectives,
passing either CPU or GPU memory. While the libraries automatically select default implementations, all existing
implementations are publicly available for the user to switch among them.

3 BENEFITS AND RESULTS
MPI Advance provides a lightweight interface that allows users to select specific implementations of methods within
the MPI standard, create additional optimized implementations for existing methods, utilize new methods not yet within
the standard or common installations of MPI, and perform MPI research without editing production MPI libraries.

Many of the optimizations within MPI Advance have been published in other papers, including locality-aware
neighborhood collectives [6], locality-aware all-gather operations [2], and optimized all-to-allv implementations [12].
Furthermore, MPI Advance provides options for GPUDirect, copy-to-CPU, and copy-to-many-CPU approaches, as
previously analyzed on Lassen and Summit, Power9 systems at LLNL and ORNL, respectively [5].

MPIPCL has been similarly benchmarked. Comparisons against other MPI point-to-point operations [15] find that
with only one partition, MPIPCL is no worse than base point-to-point operations. The second test was against an internal,
RMA-based implementation of the partitioned point-to-point APIs [7], finding that MPIPCL has similar performance,
noting that MPIPCL may fall behind the internal implementation as it leverages more internal optimizations.

4 CONCLUSIONS
Establishing community best practices, acceptance, and use of new and revised MPI features is crucial to maintaining
its value as a key parallel programming model and continuing to deliver on its promise of performance-portability in
the Exascale era. To that end, MPI Advance provides access to new standardized features in MPI on existing production
systems that are not updated, and it provides access to experimental and future standard features long before they

MPI Advance : Open-Source Message Passing Optimizations 5

appear in the MPI standard or production implementations. This set of capabilities helps speed up adoption and provides
early feedback to the designers of new features before new editions of the MPI Standard are finalized.

ACKNOWLEDGMENTS

This work was performed with partial support from the National Science Foundation under Grants Nos. CCF-2151022,
CCF-1918987, CCF-1562306, CCF-1822191, CCF-1821431, OAC-1923980, OAC-1549812, OAC-1925603, OAC-2201497,
and CCF-2151020 and the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) under
the Predictive Science Academic Alliance Program (PSAAP-III), Award DE-NA0003966. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the NSF and the U.S. Department of Energy’s NNSA.

REFERENCES
[1] Muzakhir Amanzholov. 2022. Functional Implementation of Partitioned Collective Communication Primitives. Master’s thesis. Tennessee Technological

University, Cookeville TN.
[2] Amanda Bienz, Shreeman Gautam, and Amun Kharel. 2022. A Locality-Aware Bruck Allgather. In Proceedings of the 29th European MPI Users’ Group

Meeting (Chattanooga, TN, USA) (EuroMPI/USA’22). Association for Computing Machinery, New York, NY, USA, 18–26. https://doi.org/10.1145/
3555819.3555825

[3] Amanda Bienz, William D. Gropp, and Luke N. Olson. 2020. Reducing communication in algebraic multigrid with multi-step node aware communi-
cation. The International Journal of High Performance Computing Applications 34, 5 (2020), 547–561. https://doi.org/10.1177/1094342020925535
arXiv:https://doi.org/10.1177/1094342020925535

[4] Amanda Bienz, Luke N. Olson, and William D. Gropp. 2019. Node aware sparse matrix-vector multiplication. J. Parallel and Distrib. Comput. 130
(2019), 166 – 178. https://doi.org/10.1016/j.jpdc.2019.03.016

[5] Amanda Bienz, Luke N. Olson,William D. Gropp, and Shelby Lockhart. 2021. Modeling Data Movement Performance on Heterogeneous Architectures.
In 2021 IEEE High Performance Extreme Computing Conference (HPEC) (Waltham, MA, USA). IEEE, 1–7. https://doi.org/10.1109/HPEC49654.2021.
9622742

[6] Gerald Collom, Rui Peng Li, and Amanda Bienz. 2023. Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware
Parallelism. arXiv:2306.01876 [cs.DC]

[7] Matthew G.F. Dosanjh, Andrew Worley, Derek Schafer, Prema Soundararajan, Sheikh Ghafoor, Anthony Skjellum, Purushotham V. Bangalore,
and Ryan E. Grant. 2021. Implementation and evaluation of MPI 4.0 partitioned communication libraries. Parallel Comput. 108 (2021), 102827.
https://doi.org/10.1016/j.parco.2021.102827

[8] Ryan E. Grant, Matthew G. F. Dosanjh, Michael J. Levenhagen, Ron Brightwell, and Anthony Skjellum. 2019. Finepoints: Partitioned Multithreaded
MPI Communication. In High Performance Computing - 34th International Conference, ISC High Performance 2019, Frankfurt/Main, Germany, June
16-20, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11501), Michèle Weiland, Guido Juckeland, Carsten Trinitis, and Ponnuswamy
Sadayappan (Eds.). Springer, Frankfurt, Germany, 330–350. https://doi.org/10.1007/978-3-030-20656-7_17

[9] Daniel J. Holmes, Anthony Skjellum, Julien Jaeger, Ryan E. Grant, PurushothamV. Bangalore,MatthewG.F. Dosanjh, Amanda Bienz, andDerek Schafer.
2021. Partitioned Collective Communication. In 2021Workshop on ExascaleMPI (ExaMPI). IEEE, 9–17. https://doi.org/10.1109/ExaMPI54564.2021.00007

[10] Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson. 2023. Performance Analysis and Optimal Node-Aware Communication for
Enlarged Conjugate Gradient Methods. ACM Trans. Parallel Comput. 10, 1, Article 2 (mar 2023), 25 pages. https://doi.org/10.1145/3580003

[11] MPI Forum. 2020. MPI: A Message-Passing Interface 4.0 Standard. Technical Report. Univ. of Tennessee, Knoxville, TN, USA.
[12] Evelyn Namugwanya, Amanda Bienz, Derek Schafer, and Anthony Skjellum. 2023. Collective-Optimized FFTs. arXiv:2306.16589 [cs.MS]
[13] Anthony Skjellum, Nathan E Doss, and Kishore Viswanathan. 1994. Inter-communicator extensions to MPI in the MPIX (MPI eXtension) Library.
[14] Anthony Skjellum, Nathan E Doss, Kishore Viswanathan, Aswini Chowdappa, and Purushotham V Bangalore. 1994. Extending the message passing

interface (MPI). In Proceedings Scalable Parallel Libraries Conference. IEEE, Mississippi State, MS, USA, 106–118.
[15] Andrew Worley, Prema Prema Soundararajan, Derek Schafer, Purushotham Bangalore, Ryan Grant, Matthew Dosanjh, Anthony Skjellum, and

Sheikh Ghafoor. 2021. Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives. In 50th International Conference
on Parallel Processing Workshop (Lemont, IL, USA) (ICPP Workshops ’21). Association for Computing Machinery, New York, NY, USA, Article 35,
11 pages. https://doi.org/10.1145/3458744.3474046

https://doi.org/10.1145/3555819.3555825
https://doi.org/10.1145/3555819.3555825
https://doi.org/10.1177/1094342020925535
https://arxiv.org/abs/https://doi.org/10.1177/1094342020925535
https://doi.org/10.1016/j.jpdc.2019.03.016
https://doi.org/10.1109/HPEC49654.2021.9622742
https://doi.org/10.1109/HPEC49654.2021.9622742
https://arxiv.org/abs/2306.01876
https://doi.org/10.1016/j.parco.2021.102827
https://doi.org/10.1007/978-3-030-20656-7_17
https://doi.org/10.1109/ExaMPI54564.2021.00007
https://doi.org/10.1145/3580003
https://arxiv.org/abs/2306.16589
https://doi.org/10.1145/3458744.3474046

	Abstract
	1 Introduction
	2 MPI Advance
	2.1 Collective Optimizations
	2.2 Persistent Neighborhood Collective Optimizations
	2.3 Partitioned Communication
	2.4 Heterogeneous Architectures

	3 Benefits and Results
	4 Conclusions
	Acknowledgments
	References

