
Extended Abstract: Taking Open MPI to New Frontiers
Amir Shehata

Thomas Naughton
David Bernholdt

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Howard Pritchard
Los Alamos National Laboratory
Los Alamos, New Mexico, USA

KEYWORDS
Message Passing Interface, High Performance Computing, libfabric,
Open MPI, Slingshot

1 INTRODUCTION
The new exascale systems at the U.S. Department of Energy (DoE)
laboratories include a new network interconnect from Cray HPE.
Frontier at the Oak Ridge Leadership Computing Facility (OLCF) is
the first DoE exascale system that includes the new Slingshot 11
network. This same interconnect is used in Aurora at Argonne
Leadership Computing Facility (ALCF) and Perlmutter at NERSC.
As such, the support of Slingshot 11 is an important capability to
meet the needs of exascale applications.

This poster highlights the design and development of infrastruc-
ture to enable Open MPI to efficiently support the new Slingshot 11
platforms. The focus of the poster is on enhancements for intra-
node and inter-node communication that uses the libfabric shared
memory (SHM) and Slingshot (CXI) providers.

2 OVERVIEW
The goal of this work is to provide an alternativeMPI usingOpenMPI
that provides comparable performance to the vendor provided MPI
(i.e., Cray MPI). Support for alternative MPI implementations are
important on large-scale systems because they offer users more
choices and can be helpful to work around problems or experiment
with new features.

2.1 Technical Landscape
The software interface to the new Cray HPE Slingshot 11 network
is based on the libfabric communication library. A new Slingshot 11
provider (CXI) has been added, which provides a user-level library

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the United States Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United States Government pur-
poses. The Department of Energy will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI’23, Sep. 11-13, 2023, Bristol, UK
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

interface to the Cassini network devices. In the context of OpenMPI,
there are a few different options for using libfabric to access the
SS11 network. We have considered three pathways (Figure 1):

(1) MTL (Matching Transport Layer) path – use libfabric tagged
message interface

(2) BTL (Byte Transfer Layer) path – use MPI for tag matching
& high-level logic & libfabric for byte transfer

(3) UCX (Unified Communication X) path – use UCX and inte-
grate libfabric under the UCX API

Ultimately, we chose to focus on the OpenMPIMTL pathway, which
is described in this poster. This approach gives us the following
advantages:

• MTL path has been optimized to work with OFI,
• Leverages rich set of functionality in CXI provider,
• Improved support for libfabric provider composability.

3 LINKX
3.1 Design Overview
The Open MPI MTL framework supports selection of exactly one
component. This limits MTL path from being able to handle both
inter- and intra-node communication efficiently with the single
libfabric component. On Frontier, it will select the CXI libfabric
provider and use it for both local and remote node communication.
However, the CXI provider does not support a shared memory
mechanisms, which results in degraded performance.

The design chosen to support Open MPI on Frontier centers
around developing a new libfabric provider, LINKx. The main pur-
pose of this provider is to link multiple providers into a single “link”,

MPI API

PML (p2p messaging layer) base

MTL base

OFI MTL

libfabric

OB1

BTL Base

SM BTL

UCX

OFI BTL

libfabric

libfabric

(1) (2) (3)

Figure 1: Open MPI Software Architecture with indication
of the three potential solution paths for using the CXI
provider.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

EuroMPI’23, Sep. 11-13, 2023, Bristol, UK Shehata et al.

Figure 2: Illustration ofOFI libfabric LINKxprovider joining
SHM and CXI core providers for use by Open MPI library,
which uses new shared queue capabilitymanaged by LINKx.

which the application layer can use without direct knowledge of
the underlying communication providers.

On Frontier, LINKx is used to link the SHM provider and the
CXI provider (Figure 2). The MPI layer, therefore, becomes agnostic
to which underlying communication mechanism is used. For on-
node processes LINKx will use the SHM provider and for off-node
processes it will use the CXI provider.

Pushing this functionality in the libfabric library as opposed
to keeping it in the MPI library has the advantage of having this
functionality available to other applications and/or middle-ware
software that uses libfabric directly.

3.2 Flow
The following outlines the flow of steps involved when using the
LINKx provider:

(1) Call fi_getinfo() which returns a list of fi_info struc-
tures; each fi_info describes one available communication
method. Libfabric orders the list from most-to-least perfor-
mant.

(2) The LINKx fi_info structure in the list links SHMwith CXI.
(3) Application selects the LINKx fi_info structure and initial-

izes using standard APIs, i.e., fi_fabric(), fi_domain(),
fi_endpoint()

(4) LINKx builds structures to track the different SHM and CXI
core providers that are part of the link.

(5) Open MPI requests the address of the LINKx provider.
(6) LINKx concatenates the addresses of the core providers.
(7) OpenMPI then publishes the the local address info toMODEX.
(8) Open MPI reads all peer addresses from MODEX and inserts

them into LINKx address vector table.
(9) LINKx parses the addresses and inserts them into the corre-

sponding core provider in the link.
(10) Open MPI uses the libfabric communication APIs, e.g., fi_

tsenddata().
(11) LINKx examines the peer locality and determines the appro-

priate provider to use for communication.

3.3 Shared Peer Structures
A Peer provider design has been adopted, which allows LINKx
to share its data structures with the core providers it is linking,
namely CXI and SHM. The two data structures that adopt this
design are the completion queue, used to post completion events
to the application, and the receive queue, which is used by the
application to post receive requests.

Both of these data structures must be shared in this manner to
abstract the details of the link from the application. Furthermore,
the receive queue must be shared to avoid race conditions where
the core providers might use the same receive request to satisfy an
incoming message. The core providers pull requests off the shared
receive queue, which LINKx manages to prevent the aforemen-
tioned race condition. Sharing the receive queue in this manner
will preclude the usage of hardware capabilities, such as hardware
tag-matching, since that will break the design paradigm, leading to
potential data corruption. As shown in the Figure 3, we measured
CXI performance with and without hardware tag-matching, and it
appears like there is no significant performance difference. How-
ever, we have not compared the CPU usage between both runs and
only tested with synthetic benchmarks. In future work, we intend
to expand the Shared Peer Structures design to include Address
Vector tables and Memory Registration.

3.4 Improvements
To improve sharedmemory device-to-device, i.e., GPU, performance
we fully implemented ROCm HSA APIs and added asynchronous
ROCm IPC support in the SHM provider. This included additions for
IPC handle caching to reduce memory attach/detach overheads. As
shown in Figure 4, these improvements resulted in point-to-point
memory performance on par with Cray MPICH.

To improve host-to-host memory performance on the Cray XE
systems we added support for XPMEM. We leveraged XPMEM
support for mapping remote process memory into the local address
space to support copying from remote buffers into local device
buffers.

The inter-process communication locking strategywas improved
to avoid unnecessary serialization. This improved workloads like
MPI_Alltoall() as shown in Figure 5.

Lastly, the network interface selection was improved to incor-
porate node topology information for optimal process to interface
mapping (Figure 5).

Extended Abstract: Taking Open MPI to New Frontiers EuroMPI’23, Sep. 11-13, 2023, Bristol, UK

Figure 3: Collective latency CPU-to-CPU memory with and
without hardware tag matching osu-alltoall H2H (𝑛𝑝 = 512
with 𝑝𝑝𝑛 = 8 on 𝑛𝑜𝑑𝑒𝑠 = 64)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

20000

40000

60000

80000

100000

Ba
nd

w
id

th
 (

M
B/

s)

ompi-d2d-nolinkx-shm
ompi-d2d
cray-d2d

beaker.ornl.gov osu_bibw.csv beaker

Figure 4: Point-to-point bi-directional bandwidth with GPU-
to-GPU memory (intra-node) osu-bibw D2D (𝑛𝑝 = 2 with
𝑝𝑝𝑛 = 2 on 𝑛𝑜𝑑𝑒 = 1)

(GPU)

Figure 5: Collective latency CPU-to-CPU memory osu-
alltoall H2H (𝑛𝑝 = 1024 with 𝑝𝑝𝑛 = 8 on 𝑛𝑜𝑑𝑒𝑠 = 128)

4 CONCLUSION
This poster highlights recent work to enable OpenMPI to efficiently
support the new Slingshot 11 platforms that are emerging at several
U.S. Department of Energy supercomputing facilities. The libfabric
changes include support for joining multiple providers (e.g., CXI
and SHM) into a single “link”’, which the application layer can
use without direct knowledge of the underlying communication
details. This work is beneficial to other libfabric enabled middle-
ware software projects that seek to support exascale application on
the emerging exascale systems.

This poster highlights architectural and design choices for effec-
tive use of shared memory and inter-node communication involv-
ing both host and device memory. We include initial performance
results for message passing interface benchmarks using SS11 on
systems running at OLCF.

Note: Please see poster for additional details & performance graphs.

ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge

National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725. Howard Pritchard acknowledges support by the National

Nuclear Security Administration. Los Alamos National Laboratory is operated by Triad National

Security, LLC for the U.S. Department of Energy under contract 89233218CNA000001. LA-UR-23-

23988. This research was partially supported by the Exascale Computing Project (17-SC-20-SC), a

collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear

Security Administration.

Taking Open MPI to New Frontiers

Amir Shehata 1, Thomas Naughton1, David Bernholdt1, Howard Pritchard2

Solution Overview

1 Oak Ridge National Laboratory
2 Los Alamos National Laboratory

• “Frontier” system at OLCF
• Set the HIP_VISIBLE_DEVICES to nearest GPU(s)
• OMPI binds each process to the nearest NIC
• Alpha release
 module use /sw/frontier/ums/ums024/cce/15.0.0/modules
 module load openmpi
 mpirun --bind-to core --map-by ppr:1:l3cache \
 --np $SLURM_NTASKS ./application

Future Work
• Refining provider selection at the OMPI layer
• Support Intel GPUs on Aurora
• Add libfabric Peer APIs for Memory Region Registration
• Performance tuning (eg: Small Messages, Collectives)

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced
system engineering and early testbed platforms, in support of the nation’s exascale computing imperative.

Problem Statement & Goals
Problems addressed:

l Vendor only provides Cray MPI on Frontier

l Users need more choice of MPI implementations (work
around problems, try out new features)

Goals:

l Provide an alternative MPI using Open MPI that provides
comparable performance to Cray MPI

Technical Landscape

LINKx Provider
• New provider designed to link multiple providers
• Allows Open MPI to use libfabric for both local

and remote communication
 - Endpoint selection based on peer locality
• LINKx shares both completion & receive queues
 - Reduce communication & memory overhead
 - Disable HW tag matching for data consistency

Improvements
Libfabric Shared Memory (SHM) Provider:
To support all MPI use cases the following SHM provider features have been added
• Full support for ROCM HSA APIs
• Added Asynchronous ROCM IPC Support
• Added IPC Caching mechanism
• Added XPMEM Support
 - XPMEM allows mapping remote process memory space locally.
 This provides an efficient method of sharing memory
• Support H2D via XPMEM, since XPMEM maps remote process memory locally, it can then be copied directly

into Device memory
• SHM locking improvements
 - SHM provider locking was very coarse, causing serialization between processes
 - Moved to a lockless strategy to minimize serialization
Network Interface Selection:
• Use distance topology information for optimal process to interface binding

Status
Completed
• Shared completion & receive queues
• SHM features (ROCM support, Asynchronous IPC, etc.)
• SHM Locking improvements
• LINKx with tagged message support
• LINKx with RMA support
• OMPI Process/NIC binding

Av
er

ag
e

La
te

nc
y

(u
s)

(0
 -

80
K

us
)

• Cray support Slingshot 11 via a new CXI libfabric provider
• Three potential solutions to use the CXI provider
 1. Open MPI MTL path - use libfabric tagged message interface
 2. Open MPI BTL path - use MPI for tag matching & high-level logic &
 libfabric for byte transfer
 3. Open MPI UCX path - use UCX and integrate libfabric under the
 UCX API
• Open MPI MTL option was selected
 - This solution represents the most logical path forward, as it makes
 full use of the CXI provider’s functionality; also allows us to improve
 libfabric in its totality to support provider composability.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

Example of Open MPI initialization with LINKx
1. Initialize libfabric to get LINKx provider with

SHM+CXI
2. Application does typical libfabric setup for

provider
3. LINKx builds structures to track linked providers
4. Open MPI MODEX: Before exchange, LINKx

concatenates all addresses in link and publishes
5. Open MPI MODEX: After exchange, Open MPI

reads all addresses, LINKx parses & sets up linked
providers

6. Open MPI uses libfabric APIs to communicate
with peers. At runtime, LINKx examines peer &
selects best provider based on locality.

MPI API

PML (p2p messaging layer) base

MTL base

OFI MTL

libfabric

OB1

BTL Base

SM BTL

UCX

OFI BTL

libfabric

libfabric

(1) (2) (3)

Testing Environment

Ba
nd

w
id

th
 (M

B/
s)

(0
 -

40
 G

B/
s)

CXI tag matching alltoall (HW/SW)
512np + 8ppn + 64n

Av
er

ag
e

La
te

nc
y

(u
s)

(0
 -

80
K

us
)

Message Size
1B – 1MB

Message Size
1B – 4MB Message Size

1B – 1MB

Av
er

ag
e

La
te

nc
y

(u
s)

(0
 -

80
0

us
)

D2D Broadcast Latency
512np + 8ppn + 64n

D2D Gather Latency
512np + 8ppn + 64n

Av
er

ag
e

La
te

nc
y

(u
s)

(0
 -

14
K

us
)

Message Size
1B – 1MB

Message Size
1B – 512K

H2H alltoall Latency
1024np + 8ppn + 128n

Message Size
1B – 4M

H2H one-sided put_bibw Bandwidth
2np + 1ppn + 2n

D2D Bi-directional Bandwidth
2np + 1ppn + 2n

	EuroMPI_2023
	1 Introduction
	2 Overview
	2.1 Technical Landscape

	3 LINKx
	3.1 Design Overview
	3.2 Flow
	3.3 Shared Peer Structures
	3.4 Improvements

	4 Conclusion
	Acknowledgments

	eurompi23-poster-ss11

