
Implementing the MPI ABI in the MPC MPI Runtime

Corentin Beaulieu
corentin.beaulieu@cea.fr

CEA, DAM, DIF
Arpajon, France

Julien Jaeger
julien.jaeger@cea.fr
CEA, DAM, DIF
Arpajon, France

Jean-Baptiste Besnard
jbbesnard@paratools.fr

ParaTools SAS
Bruyères-le-Châtel, France

(a) Before the ABI efforts. (b) After the ABI efforts.

Figure 1: PCVS output for the ongoing port of the ABI in the MPC runtime.

ABSTRACT

MPI is the de-facto standard for message-passing and more gener-
ally distributed memory programming in High-Performance Com-
puting (HPC). For the last 25 years, this programming interface
has continuously renewed itself to provide the best performance
to parallel programs. With a rigorous standardization process and
backward compatibility, MPI is known as a reliable interface. How-
ever, recent evolutions have pushed for implementing an Appli-
cation Binary Interface (ABI) in the standard, for several reasons
that we will quickly cover in the context of the MPC MPI runtime.
In this poster, we first outline our vision of the ABI benefits for
MPC and more generally MPI and then detail how we implement it
in the context of this specific runtime. We then conclude with the
opportunities for a more open MPI ecosystem thanks to such ABI.

KEYWORDS

MPI, ABI, Testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI 2023, September 2023, Bristol UK

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Corentin Beaulieu, Julien Jaeger, and Jean-Baptiste Besnard. 2018. Imple-
menting the MPI ABI in the MPC MPI Runtime. In Proceedings of Eu-

roMPI 2023. ACM, New York, NY, USA, 3 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

For the last 25 years, MPI has been setting the standard for mes-
sage passing in High-Performance Computing, enabling distributed
memory computation at scale. In computer science, such longevity
is exceptional and it testifies to the exceptional capabilities and use-
fulness of the MPI standard. Meanwhile, the HPC landscape is about
to rapidly change which the rise of new drivers in the computing
demands: machine learning. While simulation usefulness is not to
be questioned, driving HPC since the start[2], Machine Learning
(ML) payloads are probably the use-case which will leads to the
largest computing demand in the near future[18, 21]. Despite ML
being mostly based on Python frameworks and GPUs[1, 19], there
are no reasons it shall not leverage more efficient native languages
and eventually distributed memory to further accelerate its results.

This general introduction is bringing us to the implementation
of the ABI inside MPI[16]. Indeed, we think that MPI has to become
more agile in terms of target languages and ecosystem to make it a
reliable candidate for ML payload willing to scale out of a single
node. Due to its longevity, MPI’s usefulness is demonstrated for
tightly boundHPC payloads, the question is then how to extend it to
other payloads and more precisely other programming languages.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EuroMPI 2023, September 2023, Bristol UK Beaulieu, et al.

2 TOWARDS A MULTI-LANGUAGE
INTERFACE

We think that one of the first characteristics of ML payloads is
that they generally use higher-level languages and solely run their
compute-intensive kernels using native languages (Numpy[22],
Cuda). MPI usage for such payloads is then associated with the
availability of expressive bindings in the language of interest, mostly
Python. This process is currently cumbersome as it is difficult to
target the various runtimes of interest (OpenMPI and MPICH) as
they do not share the same ABI. For this reason, the definition
of an MPI ABI is a facilitator for such effort ś ensuring the wide
availability of MPI for Python (and many others) bindings.

HPC is used to a limited set of scenarios, OpenMP, MPI, Fortran,
C, and C++[3, 12] while ML is much more agile in terms of computa-
tional expressivity[17] ś relying on a wide range of runtimes. There
is then certainly an area of convergence keeping the best of both
worlds, the flexibility of higher-level languages and the efficiency
of compiled languages. Growing interest[6, 9, 14] for Python[8],
Rust[7, 13] and Julia[5] in HPC is testimony to the need for new
abstractions and alternative ways of defining computing.

Following this statement, we considered that the ability to grace-
fully interact with other languages is a priority for MPI and there-
fore, this need translated to the implementation of the MPI ABI in
the MPC MPI runtime which is a research vehicle for MPI.

3 MULTI-PROCESSOR COMPUTING (MPC)

MPC[20] is a thread-based implementation of MPI. It aims at trans-
parently converting regular MPI processes (bound to UNIX pro-
cesses) to thread-based processes (bound to user-level threads). This
process is supported by a dedicated modified compiler which trans-
lates global variables to Thread-Local Storage (TLS) automatically[4].
This enables a single UNIX process to run the same binary multiple
times inside a shared-address space. In addition, MPC is also featur-
ing an OpenMP runtime[10] and an implementation of User-Level
Threads (ULT) compliant with Pthreads to capture all active wait
state into the scheduler.

4 IMPLEMENTING THE ABI

As far as the ABI is concerned it is based on pointer handlers and
specifies values for all the handles in the space of the first system
page (less than 4KB). Implementing the ABI is then matching all
the handle types in MPI with pointers and following all the values
as stated by the MPI standard. The reference implementation for
this is done by Hammond in the context of Mukautuva[11], it is
what we follow to make a first implementation in MPC.

4.1 Current State of MPC

Due to constraints in the Fortran handles, MPC originally used
integer-based handles to manage its whole interface. This allowed
the direct implementation of F77 bindings without any form of
conversion[23]. The drawback is naturally that the conversion is
systematic for C and C++ while not being compulsory. A recent
refactoring has defined pointer-based handles for communicators
and MPI windows[15], but all handles must be completed to match
the ABI constraints. It is this process that the poster outlines, with

a focus on how we monitor the change and progress thanks to
test-driven development.

4.2 Outline of ABI Changes

Changing from integer handles to pointers is a relatively simple
process for C as practically all handles were already internally
structs and there were translation mechanisms to move from and
to these integers. These structs have now to be exposed as opaque
structs (which are also normalized) to follow the proposed ABI.
This then leads to changes in the outer layers of the MPI interface,
removing conversions and eventually removing some logic and tests
in the MPC runtime, simplifying the C interface logic by directly
consuming the opaque struct.

5 TEST-DRIVEN APPROACH

Due to the number of cases to handle, we have started our imple-
mentation of the ABI inside MPC by working on a generic test suite
for the new ABI. As the ABI is still a moving target and under the
active definition in the standard, we needed to define a dynamic
way of testing. We then use a JSON file which is unfolded thanks
to a dedicated script into multiple tests. This stands both for types
and values.

Listing 1: Json defining the test for an MPI_Datatype handle.

{ " name " : " MPI_Datatype " , " v a l u e " : " s t r u c t MPI_ABI_Datatype ∗ " ,
" k ind " : " type " , " l ang " : " c " }

Using the code defined in the Listing 1, the test of Listing 2 is
unfolded to validate that the target handle has the right type. It
uses the C11 _Generic extension to validate the equality of the
handle typedef and its opaque struct name. As far as the predefined
values are concerned this is simply based on asserts.

Listing 2: Test generated from Listing 1.

i n c l u d e <mpi . h>
i n c l u d e < a s s e r t . h>
i n c l u d e < s t d d e f . h>
i n c l u d e < s t d i n t . h>

i n t main (vo id)
{

MPI_Datatype var ;
i n t sametype = _Generic (var , s t r u c t MPI_ABI_Datatype ∗ : 1 , ←↪

d e f a u l t : 0) ;
assert (sametype) ;
r e t u r n 0 ;

}

With the test, we also leverage the PCVS testing runtime to run
all the tests in parallel, while generating a report of our porting
efforts.

5.1 State of the Implementation

As presented in Figure 1 which shows a report of the ABI test
suite both before and after the beginning of our porting efforts
we are currently in the process of fully implementing the ABI in
MPC. Overall the process is relatively straightforward and we do
not encounter practical issues to do so. It is mostly a repetitive
and error-prone process due to the large number of functions and
handle values in MPI. For this reason, we believe that the ABI test
suite which we have built to guide our efforts will be useful for the
wider MPI community ensuring all ABI requirements are fulfilled.

Implementing the MPI ABI in the MPC MPI Runtime EuroMPI 2023, September 2023, Bristol UK

For this reason, this code will be part of the http://mpicheck.pcvs.io
automated test suite as soon as ABI constraints start to be drafted
as a standard.

6 CONCLUSION

In this poster, we described how MPC is implementing the future
MPI ABI. We first motivated the in-depth changes we see in the
HPC landscape in the near future and outlined how important
language bindings will be in this changing context. We have defined
a complete and automatically scaffolded test suite for the MPI ABI,
test-suite that can be used by other MPI runtimes to ensure their
compliance. This test-suite will be released in open-source as part
of mpicheck shortly.

Following this effort, we are also considering implementing parts
of the MPC runtime in other languages, we have efforts undergoing
to reimplement the user-level scheduler in Rust and we want to
continue this modularization. It is also important to note that thanks
to the ABI it is now possible to create portable plugins to replace
part of the MPI interface. Such plugins can also be in any language
as long as they satisfy the C ABI. We see this use of new languages
as an opportunity to experiment with other languages which may
provide opportunities for more idiomatic implementations and
transitively more actionable codes.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
265ś283.

[2] Gordon Bell, David H Bailey, Jack Dongarra, Alan H Karp, and Kevin Walsh. 2017.
A look back on 30 years of the Gordon Bell Prize. The International Journal of
High Performance Computing Applications 31, 6 (2017), 469ś484.

[3] David E Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata,
Ryan E Grant, Thomas Naughton, Howard P Pritchard, Martin Schulz, and Geof-
froy R Vallee. 2020. A survey of MPI usage in the US exascale computing project.
Concurrency and Computation: Practice and Experience 32, 3 (2020), e4851.

[4] Jean-Baptiste Besnard, Julien Adam, Sameer Shende, Marc Pérache, Patrick Car-
ribault, Julien Jaeger, and Allen D Maloney. 2016. Introducing task-containers
as an alternative to runtime-stacking. In Proceedings of the 23rd European MPI
Users’ Group Meeting. 51ś63.

[5] Simon Byrne, Lucas CWilcox, and Valentin Churavy. 2021. MPI. jl: Julia bindings
for the Message Passing Interface. In Proceedings of the JuliaCon Conferences,
Vol. 1. 68.

[6] Valentin Churavy, William F Godoy, Carsten Bauer, Hendrik Ranocha, Michael
Schlottke-Lakemper, Ludovic Räss, Johannes Blaschke, Mosè Giordano, Erik
Schnetter, Samuel Omlin, et al. 2022. Bridging HPC Communities through the
Julia Programming Language. arXiv preprint arXiv:2211.02740 (2022).

[7] RustMPI Contributors. 2023. RustMPI: MPI bindings for Rust. https://github.
com/rsmpi/rsmpi. GitHub repository.

[8] Lisandro Dalcín, Rodrigo Paz, Mario Storti, and Jorge D’Elía. 2008. MPI for
Python: Performance improvements and MPI-2 extensions. J. Parallel and Distrib.
Comput. 68, 5 (2008), 655ś662.

[9] Patrick Diehl, Steven R Brandt, Max Morris, Nikunj Gupta, and Hartmut Kaiser.
2023. Benchmarking the Parallel 1D Heat Equation Solver in Chapel, Charm++,
C++, HPX, Go, Julia, Python, Rust, Swift, and Java. arXiv preprint arXiv:2307.01117
(2023).

[10] Manuel Ferat, Romain Pereira, Adrien Roussel, Patrick Carribault, Luiz-Angelo
Steffenel, and Thierry Gautier. 2022. Enhancing MPI+ OpenMP Task Based
Applications for Heterogeneous Architectures with GPU Support. In International
Workshop on OpenMP. Springer, 3ś16.

[11] Jeff Hammond. 2023. Mukautuva: A Demonstrator for the MPI ABI. https:
//github.com/jeffhammond/mukautuva. GitHub repository.

[12] Atsushi Hori, Emmanuel Jeannot, George Bosilca, Takahiro Ogura, Balazs Gerofi,
Jie Yin, and Yutaka Ishikawa. 2021. An international survey on MPI users. Parallel
Comput. 108 (2021), 102853.

[13] Matthias Kübrich. 2020. Integration and Test of RUST Tool Support for MPI.
(2020).

[14] Wei-Chen Lin and Simon McIntosh-Smith. 2021. Comparing julia to performance
portable parallel programming models for hpc. In 2021 International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE, 94ś105.

[15] MPC Development Team. 2023. MPC MPI Runtime - Release 4.2.0. https://mpc.
hpcframework.com/download/. Official website.

[16] MPI ABI Working Group. 2023. MPI ABI Working Group. https://github.com/
mpiwg-abi. Accessed on: July 7, 2023.

[17] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López García,
Ignacio Heredia, Peter Malík, and Ladislav Hluchỳ. 2019. Machine learning and
deep learning frameworks and libraries for large-scale data mining: a survey.
Artificial Intelligence Review 52 (2019), 77ś124.

[18] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[20] Marc Pérache, Patrick Carribault, and Hervé Jourdren. 2009. MPC-MPI: An
MPI implementation reducing the overall memory consumption. In Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface: 16th European
PVM/MPI Users’ Group Meeting, Espoo, Finland, September 7-10, 2009. Proceedings
16. Springer, 94ś103.

[21] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[22] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in science &
engineering 13, 2 (2011), 22ś30.

[23] Junchao Zhang, Bill Long, Kenneth Raffenetti, and Pavan Balaji. 2014. Imple-
menting the MPI-3.0 Fortran 2008 binding. In Proceedings of the 21st European
MPI Users’ Group Meeting. 1ś6.

http://mpicheck.pcvs.io
https://github.com/rsmpi/rsmpi
https://github.com/rsmpi/rsmpi
https://github.com/jeffhammond/mukautuva
https://github.com/jeffhammond/mukautuva
https://mpc.hpcframework.com/download/
https://mpc.hpcframework.com/download/
https://github.com/mpiwg-abi
https://github.com/mpiwg-abi
https://arxiv.org/abs/2303.08774

C. Beaulieu1, J. Jaeger1,3, J.B. Besnard2

1 CEA, DAM, DIF, F-91297 Arpajon, France 3 Laboratoire en Informatique Haute Performance pour le
Calcul et la Simulation, 91680 Bruyères-le-Châtel, France2 ParaTools SAS, 91680 Bruyères-le-Châtel, France

LiHPC Towards inter implementations operability

Implementing the MPI ABI in the MPC Runtime

[3] https://github.com/jeffhammond/mukautuva

[2] https://github.com/cea-hpc/pcvs

[1] https://github.com/cea-hpc/mpc

MPI1 2 Why Standardize the ABI?

Simplify the use of MPI Help containerize

Packet gestion

Open up to new languages

Improve profiling and debugging

Multi-Processor Computing3

https://mpc.hpcframework.com/

Parallel Computing Validation System

PC S

MPICHECK Check the ABI

MPICH 4.1.1

65

https://mpicheck.pcvs.io/

Implementing the ABI7

Conclusion8
 The standardization of the MPI ABI is a new layer of constraints. Nevertheless, it
will allow new possibilities for the standard to evolve and conquer new users. The first
drafts and works on it has allowed us to build a test suite to check the compliance with an
ABI and to modify MPC MPI implementation to get closer to what the ABI may be.

4

Get it

$ pip3 install pcvs

Get it

$ git clone https://
github.com/
 cea-hpc/pcvs-benchmarks

$ pcvs run -p abi MPC:./abi-tests

Run a test suite

Validation engine

High scalability

Precise results visualization

Most used
library for
parallel
distributed
computing

Standardized API in C
and Fortran

Unified HPC framework

Based on user-level threads

Multiple modules

MPC 4.1.0

Test-driven

Modified
constants
Modified
handles

Listed in MPI Standard, Annex A

Values from Mukautuva[3]Test suite

Validate the MPI API

Look for symbols

Categorized by

Multi-Processor Computing
MPC

MPI

OpenMP

Threads

Memory Allocator

Two MPI implementations : Host and container

Two different implementations are most likely to be incompatible

Must use the language specific API

https://pcvs.hpcframework.com/

Message Passing Interface

A

B

I

M P I

A

P

I

M P I

P
r
e
s
e
n
t

F
u
t
u
r
e

language

type of function

standard version

Generate the suite
$ python3
mpicheck.py

P
r
e
s
e
n
t

F
u
t
u
r
e

executioncompilation

MPICHOpenMPI

Multi-Processor Computing
MPC

executioncompilation

OpenMPI

compilation execution

OpenMPI OpenMPI

Have to match compilation and linkage

360 Tests
OpenMPI 4.1.5

Mukautuva

Not defined

Standard categories

PC S

{"name": "MPI_Datatype", "value": "struct
MPI_ABI_Datatype *",
 "kind": "type", "lang": "c" }

Test description in JSON

PCVS yaml configuration file

Example of C test

MPI_Datatype var;
int sametype = _Generic(var, struct MPI_ABI_Datatype *: 1,
 default: 0);
assert(sametype);

Python Script

Validate the suite

Get results and visualize it

MPC after
modifications

Structures
Handles
Constants
Types

Common

[1]

[2]

	Abstract
	1 Introduction
	2 Towards a Multi-Language Interface
	3 Multi-Processor Computing (MPC)
	4 Implementing the ABI
	4.1 Current State of MPC
	4.2 Outline of ABI Changes

	5 Test-Driven Approach
	5.1 State of the Implementation

	6 Conclusion
	References

