
MPI
Application Binary Interface (ABI)

Standardization
Jeff R. Hammond, NVIDIA Helsinki Oy

Lisandro Dalcin, KAUST ECRC
Erik Schnetter, Perimeter Institute for Theoretical Physics

Marc Pérache, CEA DAM
Jean-Baptiste Besnard, ParaTools SAS

Jed Brown, University of Colorado Boulder
Gonzalo Brito Gadeschi, NVIDIA GmbH

Joseph Schuchart, University of Tennessee, Knoxville
Simon Byrne, California Institute of Technology

Hui Zhou, Argonne National Laboratory

What problem are we solving?

Break the dependency between how you build your MPI libraries and applications
and how you run them.

If you build with Open MPI 3.x, you need to run with Open MPI 3.x.

If you build with MVAPICH, you need to run with MVAPICH…

…or another MPICH-based implementation. Why does this work?

It’s not just you who is building MPI software: package managers, Spack and ISVs
ship binaries.

API versus ABI

API

int MPI_Bcast(void * buffer, int count, MPI_Datatype d, int root, MPI_Comm c);

MPI_Datatype and MPI_Comm are unspecified types

ABI

typedef struct ompi_datatype_t * MPI_Datatype; // Open MPI family

typedef int MPI_Datatype; // MPICH family

Lots of other stuff like SO names, SO versioning, calling convention, etc.

MPI ABI Status Quo

MPI is an API standard, which defines the source code behavior in C (C++) and
Fortran. The compiled representation of MPI features is implementation-defined.

If you compile with one of the following MPI families, you MUST run with the same.

1. MPICH / Intel MPI / MVAPICH / Cray MPI
2. Open MPI / NVIDIA HPC-X / Amazon MPI / IBM Spectrum MPI

Family 1 exists because there was a demand for interoperability with Intel MPI due
to the prevalence of usage in ISV codes.

Family 2 is not guaranteed to be consistent, especially across major versions.

1 = https://www.mpich.org/abi/

https://www.mpich.org/abi/

Modern software use cases:

● Third-party language support, e.g. Python, Julia, Rust, etc.
● Package distribution, e.g. Spack, Apt, etc.
● Tools become implementation-agnostic
● Containers
● More efficient testing (build only once)

We can:

● Architectural reasons not to are gone
● Two platform ABIs cover >90% of HPC platforms

Why?

Python

PETSc, Rust

Julia

MPICH

Open MPI

wi4mpi, containers, MPC

Rust, containers

NVHPC SDK, Fortran

TAU, E4S

Julia, MPItrampoline

Design Decisions

The Status Object

typedef {

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

int mpi_reserved[5];

} MPI_Status;

Bigger than MPICH (5) and OMPI (6).

Reserves room for a 64b count, a 32b
cancelled, and a 64b pointer, for example.

32 bytes is good for alignment.

Handles

typedef struct MPI_ABI_Comm * MPI_Comm;

typedef struct MPI_ABI_Request * MPI_Request;

...

Satisfies existing requirements (= comparison, fits into a pointer because attributes).

Supports type-safety. Compilers know that MPI_Comm is not MPI_Group.

Downside: conversions to/from Fortran are not free like MPICH (at least with LP64).

Handle Constants

0b 0000 0000 0000 to 0b 1111 1111 1111 reserved # zero page

0b 0000 0000 0000 invalid handle (detect uninitialized data)

0b 000* **** **** Everything except datatypes

0b 001* **** **** MPI_Datatype branch

0b 0010 **** **** Sufficient for all datatypes today

0b 0011 **** **** Reserved for future use

MPI_<handle>_NULL is always the handle prefix followed by 0s.

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

0b 0010 xxxxx yyy 5b for category, 3b for kind

 00... not strictly fixed-size

 01... C/C++ fixed-size

 10... reserved

 11... Fortran fixed-size

 ^^^ encoded size bits (log2 of size in bytes)

 ^ fixed-size bit

Implementations can test for fixed-size, then mask and shift
to get the element size in bytes.

Handle Constants: Fixed-size datatypes

0b000: MPI_INT(n)_T

0b001: MPI_UINT(n)_T

0b010: <float (n)b>

0b011: (size=1) ? MPI_CHAR : <C complex 2x(n/2)b>

0b100: (size=1) ? MPI_SIGNED_CHAR : reserved datatype

0b101: (size=1) ? MPI_UNSIGNED_CHAR : reserved datatype

0b110: (size=2) ? <C++ bfloat16_t> : reserved datatype

0b111: (size=1) ? MPI_BYTE : <C++ complex 2x(n/2)b>

Handle Constants: C/C++ fixed-size kinds

0b000: MPI_INTEGER(n)

0b001: MPI_LOGICAL(n) (not standard)

0b010: MPI_REAL(n)

0b011: (size=1) ? MPI_CHARACTER : MPI_COMPLEX(n)

Handle Constants: Fortran fixed-size kinds

MPI_INT, MPI_LONG, even MPI_FLOAT are not fixed-size datatypes
and require a size lookup.

It may save a few cycles to use MPI_BYTE and sizeof(), but
measurements show no impact (~11 nanoseconds with both MPICH
and OMPI).

MPI_INTEGER, MPI_REAL and MPI_DOUBLE_PRECISION are not
fixed-size datatypes. More on this later...

Handle Constants: Other datatypes

32-61 Op

256-288 Comm, Group, Win, File, Session, Message, Errhandler,
Request

512-601 Datatype: variable-size and C/C++ fixed-size

602-623 with extras (e.g. std::complex<__float128>)

704-747 Datatype: Fortran fixed-size

Handle Constants - Table sizes

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

Requirements:

- Position sequences: 0..n (MPI_SUCCESS..MPI_ERR_LASTCODE)
- XOR-able, i.e., 2^k (e.g. MPI_MODE_NOCHECK)
- Negative (MPI_ANY_SOURCE)
- Sizes (e.g. MPI_BSEND_OVERHEAD)
- Ordered subsets (e.g. MPI_THREAD_*)
- Arbitrary (e.g. MPI_ORDER_FORTRAN)

Except for error codes, array sizes and XOR-ables, all integer constants are
unique and negative. Error messages can tell user what they passed as it
appears in the source code.

Integer Constants

// Buffer Address Constants

#define MPI_BOTTOM ((void*)0)

#define MPI_IN_PLACE ((void*)1)

// Constants Specifying Empty or Ignored Input

#define MPI_ARGV_NULL ((char**)0)

#define MPI_ARGVS_NULL ((char***)0)

#define MPI_ERRCODES_IGNORE ((int*)0)

#define MPI_STATUS_IGNORE ((MPI_Status*)0)

#define MPI_STATUSES_IGNORE ((MPI_Status**)0)

#define MPI_UNWEIGHTED ((int*)2)

#define MPI_WEIGHTS_EMPTY ((int*)3)

Other Constants

A Brief Interruption

On what does our ABI build?

C does not have an ABI. The C ABI is a function of the platform ABI and
the C compiler+runtime implementation (see glibc vs musl).

You can change the C ABI with compiler flags (e.g. AIX).

Fortran does not have an ABI. The sizes of INTEGER and REAL can be
changed by compiler flags.

Modules and CFI definitions are compiler-specific.

Platform ABIs

The MPI ABI depends on the platform ABI, which is a function of:

1. The operating system and C compiler
2. The Fortran compiler (INTEGER and REAL, string passing, the

CFI_cdesc_t ABI)
3. The filesystem (offset size, but only weakly)

Each combination of these leads to a different MPI ABI.

Implementations are not eager to support N ABIs…

Design Decisions

Design in-progress

MPI integer types:

● MPI_Aint is intptr_t because that satisfies all of the requirements
○ Segmented addressing is irrelevant and should be removed.
○ Wide (128b) pointers (e.g. CHERI) are difficult to support with 64b addresses.

● MPI_Offset should be int64_t because that will be sufficient for ~30 years
○ We are still arguing about this, because apparently sparse files with 128b offsets are a thing.

● MPI_Count should be int64_t except on 128b systems
○ Divorcing this from MPI_Offset has been discussed…

● MPI_Fint must match the Fortran compiler
○ This exists in C via f2c/c2f as well as MPI_Type_size(MPI_INTEGER,..)

It is our intent specify an ABI for 32b and 64b systems since those are what we
understand.

MPI ABI Packaging

● The header is abi/mpi.h
○ #include <mpi.h> still works - no code changes required to adopt ABI
○ The Forum should distribute a standard header for convenience

● The library is libmpi_abi.ext
○ Implementations are instructed to use platform-specific SO versioning conventions
○ The Forum should distribute a standard SO for convenience

● The ABI is versioned independently from the API
○ ABI starts with 1.0
○ Backwards-compatible changes (e.g. new handle type) increment the minor version
○ Backwards-incompatible changes increment the major version
○ Adding a new function to the API does not change the ABI

MPI Fortran ABI

● Fortran isn’t connected to platform ABI like C
● Integer constants are required to match C
● Trivial conversions for predefined handles, like MPICH
● Simple lookup overhead for other handles, like Open MPI
● Sentinels aren’t part of the ABI
● MPI_<Handle>_{f2c,c2f} and MPI_Status_{f2c,c2f} depend on MPI_Fint

○ Once we have an ABI, we can make a better API for these in MPI 5.0

1. Standalone: dlopen MPI, dlsym everything, translate everything at runtime.
○ wi4mpi (CEA)
○ MPItrampoline (Erik Schnetter)
○ Mukautuva (Jeff Hammond)

2. Integrated: the MPI library implements the ABI in a separate header+library
and does all the conversions to the existing ABI internally.

○ MPICH has done this already
3. Native: the MPI library implements the ABI throughput.

Implementing the standard ABI

https://github.com/jeffhammond/mukautuva

1. --enable-error-checking=no --enable-fast=Os --enable-g=none --with-device=ch4:ucx
2. Same as 1 plus --enable-mpi-abi

https://github.com/jeffhammond/mukautuva

When?

● Targeting MPI 4.2 as a single-feature ABI-only release (early 2024?).
● Mukautuva, wi4mpi, and MPItrampoline can support this immediately.
● MPICH has a prototype already.
● Open MPI has not implemented this but they say it’s easy.

Diffusion: upstream -> release -> packaging, etc.

FAQ

● Launchers are not part of the ABI. There are at least two options:
○ Slurm and PBS launchers are supported by all the major MPIs already.
○ mpirun can set the shared library to use, in which case the launcher and library will match.

● Wrapper scripts (e.g. mpicc) are not standard but the ecosystem will probably
have mpicc_abi or mpicc -abi.

● MPICH and Open MPI will continue to support their existing ABIs.

The End

