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A Tale of Two Barriers
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Choice of Barrier Algorithms Matters
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We have been 
benchmarking collective 

operations wrong for 
decades.



Barriers only Synchronize in Space
• Barrier Skew: 

difference between minimum and maximum barrier time
• Barriers do not guarantee any time synchronization
• But that is what we want for benchmarks!
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What we care about

What we care about:

• Latency
• Latency hiding
• Bandwidth
• Concurrency
• Resource usage
• Hardware features
• Correctness

What we don’t care about:

• Impact of barrier algorithms
(unless we’re benchmarking barrier latency)
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Why should we care?
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Why don’t we care?
• We know this is bad, but all common benchmarks do it anyway
• Proper implementation is not trivial
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Intel MPI Benchmarks

OSU Micro-Benchmarks

LLNL mpiBench



• MPI provides abstractions on many levels
• Abstract away the hard stuff
• No user should have to implement reductions
• Or broadcast
• Or alltoall
• Or message matching

Collective

How can we care?
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RMA

Network

Point-to-PointMPI should provide 
process time 

synchronization!



Process Synchronization in Time
• Few machines provide global clocks (MPI_WTIME_IS_GLOBAL)
• Only have the work

• All others: Synchronization in 2 steps:
1. Ensure synchronized virtual clocks
2. Ensure synchronized execution
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Challenge: Clock Drift
• Clocks run at different speeds (1-10ppm)
• Impacted by temperature

and manufacturing differences
• Drift correction:
• Include drift in local clock synchronization
• Periodically re-synchronize
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Introducing: MPIX_Harmonize
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• Synchronizes internal clocks in regular intervals
• To correct for clock drift
• Every few seconds (automatically adjustable?)

• Attempts to block processes until a common point in time
• flag == true if calling process reached deadline
• flag == false if calling process missed deadline
• Application deals with synchronization misses

• Processes resume execution in harmony



MPIX_Harmonize Algorithm
• Periodically resynchronize clocks
• Or if a process previously missed a deadline
• Process 0 broadcasts new deadline
• Processes block until deadline, return success or 

failure
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Usage in Collective Benchmarks
1. Harmonize processes
2. Perform operation under test
3. Discard invalid measurements
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Evaluation
• All experiments performed on Hawk installed at HLRS, Stuttgart, 

Germany
• 2x64 core AMD EPYC Rome
• 200Gbit/s ConnectX-6
• Up to 64 nodes (64k processes)
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Cost of Process Synchronization
• Synchronization Skew: 
• Majority: < 0.5us
• Outliers: < 2us
• ~ 1/100 of barrier

• Clock Synchronization <1ms
• First synchronization more costly due to

connection setup
• 0.1 – 1% overhead if done every second
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Impact on MPI_Bcast
• 4B messages, process scaling
• Open MPI: knomial impacted by barrier algorithm
• MVAPICH: lower reported latency with barrier-synchronization
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Synchronization does not impact 
algorithm performance, but latency 

reported by OSU benchmarks.



Impact on MPI_Reduce Benchmarks
• Some algorithms in Open MPI show large spread between barrier-

synchronization and MPIX_Harmonize (binomial)
• Open MPI default heuristic needs to be re-evaluated
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MPI_Reduce on 16k processes

Synchronization does not impact 
algorithm performance, but latency 

reported by OSU benchmarks.



Detour: What do we actually measure?
• The mean of means is not a good metric
• Mean over all processes
• Is that really representative?

• Tightly coupled applications sensitive to imbalances
• Better: max of means?
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Process scaling, 4B messages, MEAN Process scaling, 4B messages, MAX



Impact on MPI_Allreduce
• Impact less pronounced on non-rooted collectives
• Open MPI & MVAPICH2 heuristics should be re-evaluated
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4B messages, process scalingMessage scaling, 16k processes



Summary
• Proper time synchronization is hard but important
• Barriers introduce arbitrary arrival patterns
• MPI should provide synchronization infrastructure
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MPIX_Harmonize
Process Synchronization in Space and Time 

with local synchronization check
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