
MPI vs the
Commercialization of HPC

Ideas for a modern MPI

Joseph Schuchart
EuroMPI’23, September 16, Bristol, UK

About Me
• Masters: TU Dresden (2012)
• PhD: Stuttgart University (2020)
• Research Scientist @ ICL
• First Forum Meeting: May 2019

3

The HPC Landscape Today
• Commercialization of HPC
• Accelerators (GPU, APU, TPU, Quantum?)
• Alternative communication libraries (NCCL, RCCL)
• Decline in public funding

4

https://netl.doe.gov/business/partnerships

5

MPI & HPC Over Time

6

Is MPI becoming irrelevant?

(Or everyone just knows
about MPI by now?)

HPC vs Cloud Computing

7

The Computing Landscape is Changing
• What can MPI learn from commercial approaches?
• What does MPI bring to the table?
• How can MPI stay relevant?
• What can we learn from the past?

8

MPI: A History of Stability

The MPI standard is

A consistent & stable framework
Covering many aspects of distributed
memory programming
Nurturing a mature tools environment
Community-driven
Research-driven
Mostly funded through research
Catering to traditional HPC (academia
& HPC Centers)

The MPI standard is not

Moving fast
Compact
Easy to extend and adapt
Removing features easily
Catering to broader demands

9

MPI Chapters by the Numbers
• MPI 4.1: 540 functions
• 4.0 – 4.1: +2.9%
• 3.1 – 4.0: +32%
• 4.0 – 4.1: +4.6%
• Includes deprecated functions (5-18)
• Does not include big-count & PMPI

10

NCCL: 28 functions
(v2.18)

38 38 56 57
52 52

71 7131 33
33 295 5
13 18

12 12
26 26

8 8
8 10

30 30

33 37
52 56

59 59
0 0

0 0

8 8

34 34

36 36

36 36

40 40

42 58

26 32

55
55

30 30

35
35

0

100

200

300

400

500

600

MPI 3.0 MPI 3.1 MPI 4.0 MPI 4.1

Number of Function in MPI Chapters

Collectives Context Datatypes

Deprecated Dynamic Process Management External Interfaces

Environmental Management I/O Info Object

Language Bindings Summary Language Bindings One-Sided Communication

Partitioned Communication Profil ing Interface Point-to-Point

Tools Topologies

<4.0: grep ‘funcdef’; >=4.0: grep ‘mpi-binding’

Comparing Communication Libraries
Feature MPI 4.1 (NV)SHMEM NCCL

Communicators, Groups ✅ ✅ ✅

Custom Reduction Operators ✅ ❌ ✅

Collective Communication ✅ ✅ ✅

P2P Communication ✅ ❌ ✅

Profiling API (call interposition) ✅ ✅ ✅

One-Sided Communication ✅ ✅ ❌

Tool Introspection ✅ ❌ ❌

Custom Datatypes ✅ ❌ ❌

Multi-Library Support ✅ ❌ ❌

Failure Mitigation ❌ ❌ ✅

Stream-aware communication ❌ ❌ ✅

Device-Side Communication ❌ ✅ ❌

11

Other
Alternatives:

Gloo
MapReduce

Example: Allreduce

12

An Analogy? OpenMP and OpenACC

13

CUDA
Initial

Relase
2007

MPI 2.2
Sep

2009

OpenACC
1.0
Nov

2011

OpenMP
4.0
July

2012
(target
offload)

MPI 3.0
Sept
2012

OpenACC
2.0

June
2013

MPI 3.1
June
2015

OpenACC
2.5
Oct

2015

OpenMP
4.5
Nov

2015

MPI 4.0
Jun

2021

MPI 4.1
Nov

2022

Device Support in MPI 4.1
• Enabling/requesting support for certain memory spaces during

startup/initialization
• Asserting usage of memory spaces in communication
• Side document describing memory spaces
• Hybrid & Accelerator WG (Jim Dinan)

Goal: avoid unnecessary
initialization and buffer checks

14

M. Moraru et al:. Benefits of MPI Sessions for GPU MPI applications. EuroMPI '21 - 28th European
MPI Users' Group Meeting, Sep 2021.

Device Support Beyond MPI 4.1
Device-side triggered communications
• Partitioned communication to separate control plane (CPU) and data

plane (device)
• Missing from 4.1: Request transfer to device & RTS/CTS signaling
• But: Partitioned communication is not a panacea
• Static communication patterns
• Dynamic pattern need different approaches

15

Psend
init

Precv
init

Control
Plane

Pready

Preceived

Data
Plane

Device Host DeviceHost

Request Request

Device Support Beyond MPI 4.1
Stream-synchronous communication
• Make MPI aware of device streams
• Order communication with computation

on stream
• Several proposals to consolidate:
• MPIX_Streams
• MPIX_Queue
• Graph Execution Engine

16

N. Namashivayam et al: Exploring GPU Stream-Aware Message Passing using
Triggered Operations. 2022. https://doi.org/10.48550/arXiv.2208.04817

https://doi.org/10.48550/arXiv.2208.04817

Device Support in Implementations
• Implementations slowly added CUDA for

reductions
• MPI can achieve performance similar to NCCL
• Why do only 2 implementations support

device offload of reductions?
• Mostly engineering effort
• Conflict with proprietary network libraries

17

Allreduce on Frontier

18 Allreduce on Frontier (RCCL, Open MPI (unofficial), Cray MPICH)

Sessions: Make it count
• Sessions become available in implementations
• Many envisioned features have not materialized [1]
• Resource isolation
• Fault Tolerance

• Uptake by applications?
• Too early to say

• Mainly vehicles for malleability research?

19
[1] Holmes, Daniel, et al. "MPI Sessions: Leveraging Runtime Infrastructure to Increase Scalability of Applications at Exascale." Proceedings of the 23rd European MPI
Users' Group Meeting. 2016.

Sessions Going Forward
• Isolation of Sessions
• Progress
• Multi-threading support
• Resource usage

• Unbound objects
• Datatypes
• Attributes
• Info objects

• Unbound functions?
• Wait/Test bound through requests, but weak isolation guarantees

• FT-Integration

20

Session 1

Session 2

Session 3

Application

libA

libB

libC

21

Today, MPI’s error handling model is what it has always been;
you can assign an error handler to be called when an error

occurs in an MPI program, and when that happens you can…
well, you can print a nice message before you crash, instead

of crashing without the nice message.

[J. Dursi: HPC is dying, and MPI is killing it. 2015]

MPI-4 Error Handling Evolutions
• As part of MPI-4, we introduced

changes that makes error handling
more ‘localized’

• Initial error handler: set the error
handling during mpiexec (to avoid
FATAL behavior during MPI Init)
• MPI_ERRORS_ABORT (localize

errors to the current comm)
• Errors routed to MPI_COMM_SELF

rather than MPI_COMM_WORLD
(localize non-comm errors to the
local process)

• Overarching goal is that MPI errors
would behave more like “Posix”
errors
• Error indicate that the particular operation failed
• The rest of MPI is not necessarily in a “broken” state
• Errors should be as local as possible

Courtesy A. Boutellier22

Error Handling MPI 4.1 items
• MPI_COMM_CREATE_FROM_GROUP (Issue

511) DONE
• Error handling changed from 4.0 (Errata)
• Errors during the operation raised on the Session/Initial error handler
• Error handler argument is set on the created communicator

• Clarification of error handling fallback (Issue
588) VOTING
• We found that figuring out where to raise an error (e.g., on a comm, a

session, or fallback) was not clear
• Added flow diagram that clarifies

• MPI_ERR_ERRHANDLER (Issue 525) DONE
• New error for when an invalid error handler handle is passed to an MPI

procedure

• MPI_Delete_error_class/code/string (Issue
283) READING
• New capability to remove user defined error management handles

MPI_Comm
MPI_File
MPI_Win

MPI_Datatype
MPI_Errhandler

MPI_Info
MPI_Op

MPI_Message
MPI_Request

Invoke Communicator
Errhandler

Invoke File Errhandler

Invoke Session
Errhandler

Invoke Window
Errhandler

Invoke
MPI_COMM_SELF

Errhandler

Invoke Initial Errhandler

MPI_Group

Operation is on a …

Object
destroyed

?

World
Process
Model

initialized?
Yes

No

Group
derives
from a

Session?

No

No

Object=
SessionObject=

comm/win/file
communication
initialized on

MPI_SessionDi
re

ct
 a

ss
oc

ia
tio

n
In

di
re

ct
 a

ss
oc

ia
tio

n
N

o
as

so
ci

at
io

n

Invoked Error Handler

Object
destroyed

?

Yes

No

Yes
Yes

Error handling fallback diagram

Courtesy A. Boutellier23

What’s Next? Towards MPI-5
• Current status with “posix-like error

handling” gives fallback from MPI errors,
crude fault tolerance, but no MPI fault
recovery

• Working on two main proposals:
• Fine-grained recovery: “ULFM v2” – Led by Aurelien Bouteiller
• Coarse-grained recovery: “Reinit” – Led by Ignacio Laguna

• Proposals designed independently, but designed to be compatible
and completement each other

• Implementation Status
• ULFM v1 and v2 in Open MPI v5.0.x/main
• ULFM v1 in MPICH
• Reinit in Open MPI branch

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

R
ecovery

P1

P2

P3

Pn

B
cast

B
cast

S
hrink

B
cast

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I

N
 R

U
N

N
IN

G
 T

IM
E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i

s
 f

a
s

te
r

U
L

F
M

 i
s

 f
a

s
te

r

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Spaw
n

ULFM FT mode:
operations can continue on failure-damaged communicators
SHRINK operation can create new clean communicators without
failed processes
Replacement process spawning under user control

Reinit FT mode:
Faults cause the application to return to the MPI_Reinit call
Replacement processes spawned implicitly
All communicators invalidated

Courtesy A. Boutellier24

Upcoming new FT features Timetable
• ULFM Slice 1: General Chapter Structure and error

reporting
• MPI_ERR_PROC_FAILED, MPI_Comm_get_failed, MPI_Comm_ack_failed,

MPI_Comm_revoke
• Implicit control for uniformity (same error raised at all ranks in collectives)
• Implicit control for error range (error raised per-operation/group/universe)
• VOTED-IN! (Q1/23)

• ULFM Slice 2: MPI_COMM_(I)AGREE
• New interface removes linkage with “ack_failed” (cleaner
• Ready for reading ETA: Q2/23?

• ULFM Slice 3: MPI_COMM_(I)SHRINK
• Communicator centric mode for creating repaired comms
• Support spawning replacement in combination with MPI2 Dynamics
• Ready for reading ETA: Q3/23?

• Slice 4: Query interface for FT mode, --with-ft
mpiexec argument
• Query from the program if an FT mode is available at runtime (code must compile,

but FT is expected to be runtime-off by default in most impl.)
• Prior interface with Attribute on MPI_COMM_WORLD undesirable (incompatible

with sessions)
• New interface required, must support enabling/querying multiple modes (if

applicable)
• Design phase ETA: Q4/23

• Slice 5: MPI 2 Dynamics
• Old text complex, because we wanted to support fully local model (root-only

consistency)

• Revisit: should we move to a ”uniform” model, or “uniform by default” model for
dynamics? Text would be simpler, examples too. ETA: Q4/23

• Slice 6: Files
• Old text probably good ETA: /24

• Slice 7: RMA
• Old text generally sound, but may need some rework to unify with the wording in

Slice 1 ETA: /24
• Should we have ”group” error range by default on Windows?
• Should we have only “group” error range on Windows?

• Slice 5.5: Sessions and Malleability
• Define fault behavior for MPI_COMM_CREATE_FROM_GROUP (the main session

entrypoint that is not a local operation) Discussion started, ETA: Q4/23
• Define fault behavior for MPI_SESSION_FREE/DISCONNECT (since these are

collective) Discussion started, ETA: Q4/23
• MPI_SESSION_REVOKE?
• Shrinking psets? Versionned psets? Discussion started but still nebulous

• Reinit
• Ignacio will show some text soon (maybe next meeting depending on agenda)
• Concepts can coexist in both standard and implementation
• Incorporating both models will require some glue text (not hard)

25 Courtesy A. Boutellier

Case Study1: MPI in Horovod
• Horovod coordinates allreduce of gradients
• NCCL allreduce executed in stream order
• Horovod designed around these constraints
• Serialized communication in Horovod-MPI

26 J. Li PhD thesis (2023)

Concurrent Allreduce in Horovod
• Communicators: concurrent collectives
• Not possible with NCCL

• Avoid negotiation phase in Horovod
• Better utilize network bandwidth
• Improve training throughput up to 50%
• Over default Horovod-MPI

27 J. Li PhD thesis (2023)

Case Study 2: ULFM & Horovod
• Elastic Horovod: fault mitigation through checkpointing
• ULFM: shrinking & growing of communicators

28 J. Li PhD thesis (2023)

29

What MPI brings to the table:

Flexible communication patterns
Fine-grained fault tolerance

Case Study 3: MPI vs LCI in PaRSEC
• PaRSEC emulates AMs using Send/Recv
• MPI: Single thread injection & extraction
• Request management
• Multi-threading concerns
• Opaque progress semantics

• LCI backend: explicit progress threads
• Improved extraction rate
• Reduced starvation

30 Omri Mor, George Bosilca, and Marc Snir. "Improving the Scaling of an Asynchronous Many-Task Runtime with
a Lightweight Communication Engine." (2023).

Progress & Threads in MPI
• Definition of progress in MPI 4.1 first step
• Cooperative strong progress
• No application interference
• But application cooperation

• Revisit previous efforts (MPI teams)
• Ties in with thread-local resources
• MPIX_Stream, virtual endpoints
• Improved injection & extraction

31

Why MPI Progress is slow

32 Note: I am not singling out any particular person or institution here.

“The MPI Forum believes the previous
paragraph is ambiguous and may clarify the

meaning in a future version of the MPI
Standard.”

• MPI thrived on stability
• But: past additions were incomplete
• Process for Extensibility and responsiveness needed

Proposals
• Modularization
• Extensions
• Modernization

Where to go from here?

33

Blocking
P2P

Non-
Blocking

P2P

Partitioned
P2P

Persistent
P2P

Derived
Datatypes

Group
Mgmt

Sessions

Blocking
Collectives

Non-
blocking

Collectives

Persistent
Collectives

RMA
Passive
Target

Tools API

Probe

Test/Wait

RMA Active
Target

Neighbor-
hood

Collectives

Topologies I/O

Modularizing MPI
• 2 full implementations of MPI
• Big lift for new implementations
• OMPI: 350kloc for MPI (w/o comments)

• Some features used by only few (no?) users
• Restructuring of document:
• Main document: core functions
• Annexes: optional functionality

• Path for removal of features
dropped by implementations

34

Blocking
P2P

Non-
Blocking

P2P

Partitioned
P2P

Persistent
P2P

Derived
Datatypes

Group
Mgmt

Sessions

Blocking
Collectives

Non-
blocking

Collectives

Persistent
Collectives

RMA
Passive
Target

Tools API

Probe

Test/Wait

RMA Active
Target

Neighbor-
hood

Collectives

Topologies I/O

MPI-CORE

MPI-OPTs

Process For Extensions
• Formalize procedures and requirements

1. Official extension namespace
2. Extension publication (MPI Forum)
3. Full implementation (MPI Advance?)
4. Demonstrated use
5. Upstreaming

• Learn from other communities
• C & C++
• OpenMP

35

Proposal Reference
Implementation Side Document Evaluation Standard

Adoption

Process For Modernization (I)
• Standard includes 2 languages that are rooted in traditional

HPC: Fortran and C
• Make MPI language-independent
• Language bindings as Side Documents

36

https://degenerateconic.com/tag/iso.html

Process For Modernization (II)
• MPI on a diet

37

Cutting off old braids.

How do we know which
features were adopted?

Supporting Modern Programming Approaches
• ABI efforts important step for distribution portability
• Generalized datatypes:
• Iterables / non-contiguous containers
• Generators

• Futures: MPI Continuations
• Side document for 4.1
• 2 PoC implementations
• Demonstrated use in applications
• Proposal finalization

38

What does MPI bring to the table?
• Wide coverage of operations
• Communication contexts
• Blocking, non-blocking & persistent operations
• A stable API with (mostly) stable implementations
• Decades of experience in HPC

39

Blocking
P2P

Non-
Blocking

P2P

Partitioned
P2P

Persistent
P2P

Derived
Datatypes

Group
Mgmt

Sessions

Blocking
Collectives

Non-
blocking

Collectives

Persistent
Collectives

RMA
Passive
Target

Tools API

Probe

Test/Wait

RMA Active
Target

Neighbor-
hood

Collectives

Topologies I/O

What to learn from the Competition?
• Adaptation to new paradigms requires (only slight) adjustments
• Accelerators are here to stay
• MPI community must adapt to this reality
• Staging grounds for new features needed

40

How can MPI stay relevant?
• Fault Tolerance (srsly)
• Device integration:
• Low-overhead support
• Device & stream integration

• Support for modern languages
• Timely adaptation to a changing computing

eco-systems through extensions
• Focus on current topics

41

Fault
Tolerance

Device
Support

Modern
Language
Support

Simplified
Extensibility

What can be learned from past mistakes?
• Immature proposals should be delayed
• Without delaying standard releases

• Regular releases provide timely updates to users
• Official path for experimental extensions
• Stable implementation should be a requirement
• Deliberately slow down expansion of the

main standard

42

CUDA Initial
Relase
2007

MPI 2.2
Sep 2009

OpenACC
1.0

Nov 2011

OpenMP 4.0
July 2012

(target
offload)

MPI 3.0
Sept 2012

OpenACC
2.0

June 2013

MPI 3.1
June 2015

OpenACC
2.5

Oct 2015
OpenMP 4.5

Nov 2015

MPI 4.0
Jun 2021

MPI 4.1
Nov 2022

Conclusions
• Manage split between stable framework and adaptable API
• Rethink what communities we focus on
• Traditional HPC / C & Fortran
• Modern Languages & compute platforms

• Incorporate advances made in the commercial space
• Deliver solutions for users, not for the MPI standard

43

Thank You!

44

Discussion

Fault
Tolerance

Device
Support

Modern
Language
Support

Easy
Extensibility

