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Introduction

● Advanced C++ libraries/code are rapidly being adopted in HPC, but many are 
constrained by their use with C libraries not designed for interacting with them.

● Message Passing Interface (MPI) standard specifies a programming model for 
passing messages between processes.

● ExaMPI is a modern C++ focused implementation of the MPI Standard.
● Kokkos is a programming model for C++ that provides data structures, 

concurrency features, and algorithms to support advanced C++ parallel 
programming across different memory spaces.

● MPI is an inter-process/node parallel programming model while Kokkos is an 
intra-process/node parallel programming model.

● However, parallel applications want to use both.



Goals

● To improve the general programming experience when using MPI with Kokkos.
● To minimize the possibility of bugs from MPI+Kokkos programs
● To enable optimizations for MPI+Kokkos at the language binding level or below.

ExaMPI is focused on principles-first design, highlighting the principles below:
● • Enable rapid new development of new features, identify ways to increase 

performance, and improve understanding of the MPI standard
● • Support the research interests and experiments of developers, such as effective 

overlap of communication and computation



Goals cont.
● Create an MPI Extension composed of a series of function bindings within ExaMPI to 

handle a Kokkos View as input or output in a similar way to buffers in MPI.
● Interface should not require the user to touch the .data() method.
● Ensure the MPI+Kokkos extension with comparable performance to traditional methods
● Due to additional handling cost, performance may be slightly worse, but has the benefit of 

functionality.
● Gather ideas for what further work can be done, and how feasible it is to create a larger 

extension



Objectives

Our objectives are as follows:
• To create a series of function bindings within ExaMPI whose syntax utilizes Kokkos 
objects in the same manner as standard MPI buffers
• These function bindings should have at least comparable performance to existing 
practices for the majority of use cases
• Allow for easier building of MPI applications using Kokkos alongside ExaMPI



Objectives cont.

These objectives are accompanied by the following questions:
• How useful are these new bindings for users?
• What are the long term opportunities created by these bindings?
• Should these bindings follow the more traditional C-style MPI bindings or experiment 
with new parameters?
• Do these bindings increase or decrease performance?



Literature Review



MPI and ExaMPI
● The Message Passing Interface (MPI) standard 

specifies a programming model interface for passing 
messages between peer processes.

● MPI offers a wide range of functions, but the most 
common are the point-to-point functions, 
MPI_Send and MPI_Recv.

● Buffers in MPI are often a contiguous array of a 
single type of data primitive.

● ExaMPI is a modern C++ implementation of MPI, 
which enabled this paper to put C++ features, 
such as templates, into the work.

● ExaMPI is focused on being a tool for rapid 
research, implementing a subset of MPI functions 
rather than the full standard.



Kokkos
● Kokkos is a programming model and 

library that provides data structures, 
concurrency features and algorithms 
to support advanced C++ parallel 
programming across different 
memory spaces.

● Kokkos is centered around its 
primary data structure, the View, a 
smart pointer class wrapping 
primitive datatypes arrays

● Kokkos has a few parallel dispatch 
operations similar to those used in 
OpenMP: parallel_for, 
parallel_reduce, and 
parallel_scan. 



Kokkos

● Coding example below shows initialization of a Kokkos View.

1 Kokkos::View<double*>check( ”check”, n );
2 Kokkos::parallel_for(check.extent(0), KOKKOS LAMBDA(int i) {
3 check(i) = i*i;
4 });



Related Work

● There exist a few previous attempts unite MPI or MPI alternatives with Kokkos
● Khuvis et al. have a shown a speedup of General Matrix Multiplication (GEMM) code 

and the Graph500 benchmark using MPI+Kokkos.
● The GEMM code uses Kokkos for parallelism of matrix multiplication alongside MPI 

to distribute the matrices, this code has noticeable improvement with each additional 
process for up to 64 processes.

● The Graph500 results show a speed-up with the locking implementation over the 
MPI-only one up to forty processes, and continued speed-up with the non-locking 
implementation of up to 5x on 64 processes.



Related Work

● The Uintah framework for modeling chemical reactions uses MPI + Kokkos to 
consolidate the use of both MPI + Pthreads and MPI + CUDA into a single 
approach that also enables added portability. 

● The UPC++ framework replaces MPI in simulating heat conduction without radical 
changes in performance compared to the IBM version of MPI. 

● Con et al. demonstrated use of the distributed many-task MPI alternative Legion 
with Kokkos to offload "boiler-plate code" away from the user. 

● The primary innovation that distinguishes this project from previous forms of 
MPI+Kokkos interaction is the ability to take Kokkos Views directly.



Methodology and 
Implementation



Further Requirements

● Able to handle Views with up to 3 dimensions
● Able to handle any contiguous View regardless of layout
● The interface should not require the user to create new derived datatypes for Views
● Retain datatype compatibility with Kokkos
● Avoid reliance on the MPI Datatype by using template parameters



MPI_Kokkos_Send & Recv Implementation
MPI_Kokkos_Send⟨View_t, Datatype⟩(

View_t * buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm comm)

MPI_Kokkos_Recv⟨View_t, Datatype⟩(

View_t * buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm comm)

● The template parameters decide the datatype information for View operations
● MPI_Kokkos_Send’s counterpart, MPI_Kokkos_Recv receives the Payload send in 

MPI_Kokkos_Send, then wraps that in a View object and sends that to the pointer passed 
as a parameter.

1 Kokkos::View<int*>check( ”check”, n );
2 MPI_Kokkos_Send<Kokkos::View<int*>, int>(&check, n, MPI_INT, 0, 0, MPI_COMM_WORLD);
3 int* check_arr = check.data();
4 MPI_Send(check_arr, n, MPI_INT, 0, 0, MPI_COMM_WORLD);



Further Implementations
● MPI_Kokkos_ISend⟨View_t, Datatype⟩(View_t * buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm 

comm, MPI Request *request)
● MPI_Kokkos_Irecv⟨View_t, Datatype⟩(View_t * buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm 

comm, MPI Request *request)
○ Synchronizes with standard functions (i.e. MPI_Wait)

● MPI_Kokkos_Bcast⟨View_t, Datatype⟩(View_t * buf, int count, MPI Datatype datatype, int root, MPI Comm comm)
● MPI_Kokkos_Allgather⟨View_t, Datatype⟩(View_t * buf, int count, MPI Datatype datatype, View_t * recv buf, int 

recv_count, MPI_Datatype recv_type,  MPI_Comm comm, MPI_Request *request)
○ MPI Kokkos Allgather takes (gathers) an input View from all processes. 
○ Then, these are compiled into a View ordered by their sending process’s index ranking. 

● MPI_Kokkos_Allreduce⟨View_t, Datatype⟩(View_t * buf, View_t * recv_buf, int count, MPI Datatype datatype, 
MPI_Op op,  MPI_Comm comm)
○ The key design choice is whether this extension should return the resulting buffer from the reduce operation as a 

View or as a data primitive.
○ To be more consistent with the previously covered functions, this function uses Views for both the send and 

receive buffers



MPI_Kokkos_Bcast Implementation
MPI_Kokkos_Bcast⟨View_t, Datatype⟩(View_t * buf, int count, MPI Datatype datatype, int root, MPI Comm comm)

● MPI_Kokkos_Bcast (short for Broadcast) resembles the functionality of Send and 
Receive combined into one function.

● The root process sends (Broadcasts) its View to all the other process ranks in the 
given communicator group, enabling a process to send to any number of other 
processes.

● Broadcast functions are a form of collective communication as it handles several 
processes.

● In communicator groups, only one process rank is identified as the root process. 



MPI_Kokkos_Allgather Implementation
MPI_Kokkos_Allgather⟨View_t, Datatype⟩(View_t * buf, int count, MPI Datatype datatype, View_t * recv buf, 
int recv_count, MPI_Datatype recv_type,  MPI_Comm comm, MPI_Request *request)

● MPI Kokkos Allgather takes (gathers) an input View from all processes. 
● Then, these are compiled into a View ordered by their sending process’s index 

ranking. 
● MPI_Allgather functions are classified as a form of collective communication as it 

handles several processes.



MPI_Kokkos_Allreduce Implementation
MPI_Kokkos_Allreduce⟨View_t, Datatype⟩(View_t * buf, View_t * recv_buf, int count, MPI Datatype datatype, 
MPI_Op op,  MPI_Comm comm)

● MPI_Kokkos_Allreduce is a collective function that collects values from several 
processes, performs an operation on them (MPI_Op) and broadcasts the result to all 
processes involved. 

● The MPI_Op can be any of a number of operations such as sum, max, etc. This 
function required more conceptual work than previous function.

● The key design choice is whether this extension should return the resulting buffer 
from the reduce operation as a View or as a data primitive.

● To be more consistent with the previously covered functions, this function uses 
Views for both the send and receive buffers



Test Results



Single-Dimension 
Ping-Pong Tests

● 500 runs were averaged on 
Views with from 64 to 
32768 elements

● The primary goal was not a 
significant change in 
performance, but roughly 
equal performance for both 
bindings

● Both types of bindings are 
better at different times, 
with very low standard 
deviation of the mean



Two-Dimensional 
Tests



Three-Dimensional 
Tests



Broadcast Tests
● Each test is run 100 times, 

then the first warm-up time 
is discarded.

● While the new bindings 
may look generally better 
here, all of this is more 
dependent on 
non-deterministic portions 
of timing and transports 
rather than simpler sends.



Heat Reduction Tests
● This test uses the heat reduction code in Kokkos tutorials which uses Views with MPI, with only the 

bindings altered for the our version.
● The Kokkos-bindings have a slightly better execution time, especially for the increased 1024 size



Conclusion

● This paper set about to integrate two programming models, MPI and Kokkos.
● Implemented several MPI bindings with  Kokkos View objects as their primary 

buffers without sacrificing the C++ nature of the Kokkos View.
● Using ExaMPI benefitted the project, as it enables the use of templates to better 

interact with Kokkos.
● After implementing the bindings for this project, we found that the new 

bindings' performed similarly to the old bindings's.



Future Work

● Wider range of MPI functions such as All-To-All, Scatter, and Gather.
● Change from MPI_Kokkos_X to overloading existing MPI functions.
● More device-specific support (i.e., MPI_Send<View, class, Device>).
● Testbed for new functions, such as byte-mapping-based transports, rather than 

traditional datatype-based transports.
● Reconciling the differences between MPI and Kokkos methods of dealing with 

non-contiguous data, and add non-contiguous View support.
● A creation of new backends to increase speed for specific types of Views (i.e., Views 

on GPUs, non-contiguous, etc.).
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