
19/12/23 19/12/23Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Improving MPI Safety for 
Modern Languages

Jake Tronge, Howard Pritchard, Jed Brown
{jtronge, howardp}@lanl.gov, jed.brown@colorado.edu

LA-UR-23-30214



29/12/23

Overview

● Problem: Modern languages (Rust) expect memory and type safety 
guarantees that are not provided by MPI

● We focus on type mismatching errors
● Present two prototype implementations providing better safety for point-to-

point communication
○ Extension to Open MPI
○ UCX-based Rust prototype using three different methods



39/12/23

MPI Type Mismatch

if (rank == 0)
MPI_Send(buf, n, MPI_INT, 1, 0, comm);

else
MPI_Recv(buf, n, MPI_FLOAT, 0, 0, comm, &status);



49/12/23

Why Is Type Matching Important?

• Program complexity makes it more of a problem
• Program correctness
• Modern languages expect type and memory safety



59/12/23

Common MPI Error Types (from Jammer et al. [4])

• Erroneous arguments
• Mismatching arguments (multiple processes)
• Erroneous program flow
• Concurrency (data races)
• Message races (wildcard matching)



69/12/23

Existing Solutions: Correctness Testing Tools

• Static analysis
• Correctness checking and profiling tools [4]



79/12/23

Problems with Correctness Checking Tools

• Don’t provide safety guarantees
• Cannot catch ephemeral errors — testing tools can interfere with 

environment [4]
• Differences between programming environments

− Errors on one system may never happen on another
• Testing for these error types is nearly impossible



89/12/23

The Rust Programming Language

• System-level programming language
• Close to C-level performance with less effort, 

better error checking [3]
• No garbage collection
• Guarantees memory safety
• Dependency management and powerful trait 

interfaces



99/12/23

Initial Work with Existing Rust MPI Bindings [2]



109/12/23

Underlying Safety Problems of RSMPI

• Some errors are difficult to check without hindering performance
− At least at the binding level

• In Rust terms, some parts of RSMPI are currently unsound



119/12/23

MPI Type Matching Rules (§ 3.3.1 [1])

Typed values require types to match on 
both the sender and receiver side

MPI_BYTE can match any type

MPI_PACKED is used for packed data 
and can match any type



129/12/23

Communication of Typed Values [1]

• Datatypes are required to match on both the sending and receiving side
• Programs that don’t follow this are considered erroneous
• Standard doesn’t require implementations to check this
• Note: partial receives are allowed for typed values



139/12/23

Possible Methods for Type Matching

• Use type signature hashing [5]
• Serialization
• Type IDs



149/12/23

Two Safe P2P Prototypes

• Type hashing implemented in Open MPI (in C)
• Prototype interface based on UCX (in Rust)



159/12/23 159/12/23

Open MPI Extension

• Implements type hashing based on the type signature [5]
• Validation is done at the PML layer
• MPI_ERR_TYPE is returned on failure
• Note: all results run on a single node

https://github.com/jtronge/ompi/tree/datatype_matching

https://github.com/jtronge/ompi/tree/datatype_matching


169/12/23

Open MPI Type Matching Implementation



179/12/23

Open MPI Results



189/12/23 189/12/23

Rust Prototype: Safety for More Complicated Types

• More “Rusty” interface
• More complicated data structures are often used in Rust and other newer 

languages
• Note: all results run on a single node

https://github.com/jtronge/safe-mpi/

https://github.com/jtronge/safe-mpi/


199/12/23

Testing Data Types

Simple data type: i32 (32-bit signed integer)



209/12/23

Rust Prototype Design



219/12/23

Example Rust API Usage



229/12/23

Latency for Simple Type



239/12/23

Latency for Complex Types



249/12/23

Bandwidth for Complex Types



259/12/23

Limitations of Rust Prototype

• Partial receives
• Collective call support



269/12/23

Conclusion: Type Matching Has Minimal Overhead

• P2P safety can be guaranteed with minimal overhead (at least for type 
signature hashing)

• Rust prototype requires more optimization
• New language-specific interfaces could be useful
• Further work is required for other types of errors (collective argument 

mismatch, etc.)



279/12/23

References

1.Message Passing Interface Forum. June 2021. MPI: A Message-Passing 
Interface Standard Version 4.0. https://www.mpi-forum.org/docs/mpi-
4.0/mpi40-report.pdf

2.RSMPI Developers. 2023. RSMPI: MPI bindings for Rust. 
https://github.com/rsmpi/rsmpi

3.Manuel Costanzo, Enzo Rucci, Marcelo Naiouf, and Armando De Giusti. 2021. 
Performance vs Programming Effort between Rust and C on Multicore 
Architectures: Case Study in N-Body. 
https://doi.org/10.1109/CLEI53233.2021.9640225

4.Tim Jammer, Alexander Hück, Jan-Patrick Lehr, Joachim Protze, Simon 
Schwitanski, and Christian Bischof. 2022. Towards a Hybrid MPI Correctness 
Benchmark Suite. https://doi.org/10.1145/3555819.3555853

5.William Gropp. 2000. Runtime Checking of Datatype Signatures in MPI. 
https://dl.acm.org/doi/abs/10.5555/648137.746488

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://github.com/rsmpi/rsmpi
https://doi.org/10.1109/CLEI53233.2021.9640225
https://doi.org/10.1145/3555819.3555853
https://dl.acm.org/doi/abs/10.5555/648137.746488


289/12/23

Extra Material: RSMPI Bandwidth with MPI_BYTE

*new result not in paper



299/12/23

Extra Material: Bandwidth for Simple Type

*new result not in paper


