
FRUSTRATED WITH 
MPI+THREADS?

TRY MPI×THREADS!

erhtjhtyhy

Hui Zhou, Ken Raffenetti, Junchao Zhao,
Yanfei Guo, and Rajeev Thakur

Argonne National Laboratory11-13 Sept. 2023, Bristol, UK



INTRODUCTION

2

• Dominant runtimes within HPC
• Single user community
• Split research community



PARALLEL COMPUTING

3

3 important aspects

• Programmability

• Environment

• Synchronization

SPMD



MPI

4

• External launcher

• Barrier between users and MPI

• Unspecified and specific

• Private variable space

• Free of race conditions and false sharing

• Message passing

• Rich API, efficient and flexible synchronizations

• Point-to-point

dominant style:
point-to-point



OPENMP

5

• Parallel regions on-demand

• Lightweight, dynamic

• Limited to on-node environment

• Shared variable space

• Susceptible to data race / false sharing

• Bulk synchronous pattern

• One-sided load/store

• Resembles MPI’s RMA w. fence synchronization

load/store
synchronization

dominant style:
one-sided



MPI & OPENMP IN A TABLE

6

MPI OpenMP

Programability
SPMD

✓
SPMD

✓

Environment static, processes, cluster dynamic, threads, on-node

Synchronization
rich patterns

pt2pt, collective, rma
Nonblocking, persistent

single pattern
bulk sync + one-sided



MPI+THREADS

7

mpiexec
MPI

communications

OpenMP
parallel regions



OPENMP’S PARALLEL REGIONS + 
MPI’S RICH COMMUNICATIONS

8

OpenMP
parallel regions

MPI
communicator

• Pick MPI’s good parts and add to where OpenMP is lacking



MPI × THREADS

9

• Pick MPI’s distributed parallel environment



MPI

Threads

Threadcomm

FROM MPI + THREADS TO MPI × THREADS

Like oil 
in water

A 
solution



MPIX THREAD COMMUNICATOR

§ Synopsis

11

int MPIX_Threadcomm_init(MPI_Comm comm, int num_threads,
MPI_Comm threadcomm)

#pragma omp parallel {
MPIX_Threadcomm_start(threadcomm);
/* use threadcomm within parallel region */
MPIX_Threadcomm_finish(threadcomm);

}

int MPIX_Threadcomm_free(MPI_Comm *threadcomm)



EXAMPLE

12



MPI THREAD LEVEL – MPI_THREAD_SINGLE
– MPI_THREAD_FUNNELED
– MPI_THREAD_SERIALIZED
– MPI_THREAD_MULTIPLE

13

• What thread level should threadcomm use?

• Uses thread – obviously

• But a single execution context per assigned rank

• Why do we need MPI thread level?

• MPI can’t tell thread contexts in MPI+Threads

• Why threadcomm does not need MPI thread level?

• Threadcomm always can tell about the thread context!



LATENCY AND BANDWIDTH

14

• Only technical difference
• No fundamental difference
• See paper for detailed discussions

MPI on threads vs
MPI on processes

Can threadcomm replace flat-MPI?



BARRIER

15

Are MPI’s APIs useable for OpenMP?



REDUCTION

16

Are MPI’s API good for OpenMP?



USING PETSC WITH THREADCOMM

17

• PETSc is not thread-safe
• Use thread-local storage
• Global init, then read-only
• Logging and debugging

• Need mutexes
• Need threadcomm-

aware
• The lessons apply to all MPI-

only applications
• The changes required by

adaptation are minimal



PETSC+THREADCOMM PERFORMANCE

18



SUMMARY

§ MPI + Threads is a compromise like mixing oil in water
§ MPI x Threads is a solution makes MPI and OpenMP work together
§ New proposal, MPIX Threadcomm, to enable MPI x Threads
§ Thread communicator will be available in MPICH-4.2, to be released this year

19



Q & A


