
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Building Source-to-Source Tools for High-
Performance Computing

Dr. Chunhua “Leo” Liao

June. 25th, 2020

C3PO’20: Compiler-assisted Correctness Checking and Performance Optimization for HPC

LLNL-PRES-811505

2

§ Background

§ Tools
— Inliner
— Outliner
— The Move Tool

§ Supportive work
— Benchmarking
— Tools as Services
— FreeCompilerCamp

§ Conclusion

Agenda

3

Compilers: traditional vs. source-to-source

Source
code

Frontend
(parsing)

Middle End
(analysis&

transformation&
optimizations)

Backend
(code

generation)

Machine
code

Source
code

Frontend
(parsing)

Middle End
(analysis&

transformation&
optimizations)

Backend
(unparsing)

Source
code

Human-Readable
Modifiable
Portable

4

ROSE: Enabling Compilers-based Tools for Critical Applications

http://ROSECompiler.org/

June 4, 1996
Guiana Space Centre (CSG)
Kourou, French Guiana

H0+36 seconds
Integer overflow in inertial reference system causes
loss of $500 million Ariane 5 launcher and payload

The U.S. power grid has millions of embedded devices
responsible for continuous operation.

http://rosecompiler.org/

5

Tools Built Using ROSE

• Analyzers: understanding, correctness, …
• Visualization tools
• Arithmetic Intensity measuring tool
• NULL pointer analyzer
• Data race detection tool

Automatically-Generated Machine Chart for
multithreaded firmware with 110K SLOC

6

Tools Built Using ROSE (Cont.)

• Translators: Optimization, modernization,
refactoring, patching …
• The AST Inliner
• The AST Outliner
• OpenMP Lowering for CPUs/GPUs
• AutoPar
• Loop Processor
• Declaration move tool
• Code patching tool

Potential reboot

Safe
Image: developer.apple.com

Identifies unsafe functions and creates patches
e.g. detect and repair unsafe strcpy

7

§ Inlining: replacing a function call with the
function body of the called function
— C++: template functions, some with

specialization
— C++11: lambda expressions (anonymous

functions)

§ Benefits:
— Traditional: eliminating overhead of function

calls, enabling analysis and optimization which
otherwise only work on single functions

— Source-level C++ inlining: facilitating program
understanding, enabling optimizations

The AST Inliner for C/C++

template<typename T>
void swap(T& x, T& y)
{

T tmp = x;
x = y;

y = tmp;
}

int foo (int a, int b)
{

swap(a,b);
}

int foo(int a,int b)
{

int &x__2 = a;
int &y__3 = b;

int tmp = x__2;
x__2 = y__3;
y__3 = tmp;

}

8

RAJA: C++ Abstractions Enabling Portable HPC Applications

RAJA
1. namespace RAJA
2. {
3. // Template function
4. template < typename EXE_POLICY_T, typename LOOP_BODY >
5. void forall (int begin, int end, LOOP_BODY loop_body)
6. {
7. forall (EXE_POLICY_T (), begin, end, loop_body);
8. }
9.

// A sequential execution policy type
10. struct seq_exec { } ;

11. // Template specialization for sequential execution
12. template < typename LOOP_BODY >
13. void forall (seq_exec, int begin, int end, LOOP_BODY

loop_body)
14. {
15. #pragma novector
16. for (int ii = begin; ii < end; ++ ii) {
17. loop_body (ii);
18. }
19. }}

§ Separating four core elements of loop execution
1. Execution template: RAJA::forall
2. Execution policy: RAJA::seq_exec
3. Iteration space: RAJA::RangeSegment
4. Loop body: lambda expressions

1. using EXEC_POLICY = RAJA::seq_exec;
2. RAJA::RangeSegment range(0, N);
3. RAJA::forall< EXEC_POLICY >(range, [=] (int i)
4. {
5. a[i] += c * b[i];
6. });

9

Inlining C++ template functions with lambda expressions

RAJA
1. namespace RAJA
2. {
3. // Template function
4. template < typename EXE_POLICY_T, typename LOOP_BODY >
5. void forall (int begin, int end, LOOP_BODY loop_body)
6. {
7. forall (EXE_POLICY_T (), begin, end, loop_body);
8. }
9.

// A sequential execution policy type
10. struct seq_exec { } ;

11. // Template specialization for sequential execution
12. template < typename LOOP_BODY >
13. void forall (seq_exec, int begin, int end, LOOP_BODY

loop_body)
14. {
15. #pragma novector
16. for (int ii = begin; ii < end; ++ ii) {
17. loop_body (ii);
18. }
19. }}

* Working in progress

Code Using RAJA

1. void foo()
2. {
3. const int n=100;

4. double *a = new double [100];

5. RAJA::forall< class RAJA::seq_exec >
6. (0, n,
7. [=] (int i) { a[i] = 0.5; }
8.);
9. }

After Inlining*

1. void foo ()
2. {
3. const int n=100;
4. double *a = new double [100];

5. #pragma novector
6. for (int ii = 0; ii < 15; ++ii) {
7. a[ii] = 0.5;
8. }
9. }

10

Inliner Algorithm

1. Eligibility check:
a) Only allow named function, static member function, non-

virtual member function, with known function body
2. Promoting function call expressions:

a) e.g. a= func1() + b; à auto temp = func1(); a= temp + b;
3. Copy the body of the function to be inlined

a) Create local variables for each formal argument, initialized
with the actual argument

b) Replace variable references with actual arguments
c) Insert a label to indicate the end of the function body
d) Convert return x to a code block

1. E.g.: return x ; à {x; goto func_end;}
4. Postprocessing: cleanup the inlined code

a) Remove unused labels,
b) Remove goto to immediate next statement

11

The AST Outliner: Effective source-to-source Outlining

Outlining: semantically the reverse transformation of inlining
Used for kernel generation, OpenMP lowering for CPUs and GPUs, autotuning of whole
programs

12

The AST Outliner: Algorithm and User Interface

outline -rose:outline:abstract_handle ”ForStatement<position,12>” -rose:outline:use_dlopen test3.cpp
// outline the for loop located at line 12 of test3.cpp, call it using dlopen

• Perform side-effect and liveness analysis
• Bottom up traverse the AST and process each outlining target

• Check the eligibility of a target
• Create an outlined function

• Create a function skeleton with parameters
• Handle function parameters: decide pass by value vs.

reference
• Move the target into the outlined function’s body
• Replace variable references: variable cloning to avoid pointer

uses
• Replace the target with a call to the outlined function

13

Parameter Handling & Reducing Pointer Dereferences

§ Scope and linkage
— C: global only
— C++: global vs. class-scope , C-linkage

§ Parameters: for control and data
— Goal: a few parameters as possible
— Rely on scope, side effect and liveness analysis

Parameters = ((AllVars − InnerVars − GlobalVars − NamespaceVars
−ClassVars) ∩ (LiveInVars U LiveOutVars)) U ClassPointers

PassByRefParameters = Parameters ∩ ((ModifiedVars ∩ LiveOutVars) U
ArrayVars U ClassVars)

▪ Variables pass-by-reference handled by classic
algorithms: pointer dereferences

▪ We use a novel method: variable cloning
— Check if such a variable is used by address: address-taken

analysis
• C: &x;
• C++: T & y=x; or foo(x) when foo(T&)

— Use a clone variable if x is NOT used by address and is
assignable

CloneCandidates = PassByRefParameters ∩ PointerDereferencedVars

CloneVars = (CloneCandidates − UseByAddressVars) ∩ AssignableVars

CloneVarsToInit = CloneVars ∩ LiveInVars

CloneVarsToSave = CloneVars ∩ LiveOutVars

14

Pointer-Dereferencing vs. Variable Cloning

Classic algorithm with pointer-dereferencing Outlining with variable cloning
void OUT__1__4027__(int *ip__, int *jp__, double omega, double
*errorp__, double *residp__, double ax, double ay, double b)
{

// Four variables becomes pointers: i,j, resid, error
for (*ip__=1;*ip__<(n-1);(*ip__)++)
for (*jp__=1;*jp__<(m-1);(*jp__)++)
{
*residp__ = (ax * (uold[*ip__-1][*jp__] + uold[*ip__+1][*jp__]) +

ay * (uold[*ip__][*jp__-1] + uold[*ip__][*jp__+1]) +
b * uold[*ip__][*jp__] - f[*ip__][*jp__])/b;

u[*ip__][*jp__] = uold[*ip__][*jp__] - omega * (*residp__);
*errorp__ = *errorp__ + (*residp__) * (*residp__);

}
}

void OUT__1__5058__(double omega,double *errorp__, double ax,
double ay, double b)
{
int i, j; /* neither live-in nor live-out*/
double resid ; /* neither live-in nor live-out */
double error ; /* clone for a live-in and live-out parameter */
error = *errorp__; /* Initialize the clone*/
for (i = 1; i < (n - 1); i++)
for (j = 1; j < (m - 1); j++) {
resid = (ax * (uold[i - 1][j] + uold[i + 1][j]) +

ay * (uold[i][j - 1] + uold[i][j + 1]) +
b * uold[i][j] - f[i][j]) / b;

u[i][j] = uold[i][j] - omega * resid;
error = error + resid * resid;

}

errorp__ = error; / Save value of the clone*/
}

15

The Outliner Used for Whole Program Autotuning

Checkpointed
Binary

Dynamically
Loadable Routine

Target Kernel

Search
Engine

Search Space

Point Evaluation

…

Evaluation
Results

Checkpointing
& Restarting

Kernel
Variants

Compilation

Optimizations &
Configurations

Checkpointing
& Restarting Lib

Effective
Outliner

Parameterized
Optimizers

SMG (semicoarsing multigrid solver) 2000
§ 28k line C code, stencil computation
§ 120x120x129 data set
§ a kernel ~45% execution time for
Results:

§ 5.55x Speedup for kernel
§ 1.76x Speedup for total execution time

16

The Move Tool: a Code Refactoring Tool to Move
Variable Declarations into Innermost Scopes
§ A source-to-source refactoring tool to support ASC application teams

— Copy-move variable declarations into innermost scopes: variable privatization
— Benefits: facilitate code parallelization (migrating to OpenMP/RAJA)

§ Algorithm went through 3 versions
— V1: Naïve single-round move
— V2: Iterative move using a declaration worklist
— V3: Separated analysis and movement: much more efficient

17

Case 1: Single Used Scope vs. Case 2: Multiple Used Scopes

void foo()
{

int i;
{

{
i =0;

}
}

}

int i;

…

i=0;

DS: Declaration Scope

US: Used Scope

IS: Intermediate Scope

Code with a declaration
a scope tree:

three types of Scope Nodes
parent-child edges

void foo()
{

int i;
{

i = 10;
{

i =0;
}

}
}

int i;

i=10;

i=0;

DS: Declaration Scope

US: Used Scope

US: Used Scope

scope tree with multiple used scopes
* trim shadowed used scope

18

Case 3: Multiple Used Scope Branches of the Same
Length

{
int tmp ;
{
{

tmp = f(i) ;
}
/*… */
{
tmp = g(i) ;

}
}

}

int tmp;

tmp= f(i); tmp=g(i);

DS

USUS
No LiveIn between
two sibling scopes

…
IS

FBN (first branch node)

{
int tmp ;
{
{

tmp = f(i) ;
}
/* … */
{

b = tmp;
tmp = g(i) ;

}
}

}

int tmp;

tmp=f(i);
b = tmp;
tmp=g(i);

DS

USUS LiveIn between
two sibling scopes

…
IS

FBN (first branch node)

Baseline algorithm V1: handles case 1,2 and 3

19

Case 4: Multiple Branches with Different Lengths

Algorithm V2: iteratively move declarations

§ A declaration copy-moved to a new location
— the newly inserted declaration should be considered for

further movements
— Focus on declarations

§ An iterative algorithm using a worklist
— initial worklist = original declarations in the function
— while (!worklist.empty())

• decl = worklist.front(); worklist.pop();
• moveDeclarationToInnermostScope(decl, inserted_decls);
• worklist.push_back(each of inserted_decls)

int tmp;

if (tone)

{

tmp = 0;

}

else

{

{

{

tmp = 0;

}

}

}

int tmp;

tmp = 0; …

tmp=g(i);

DS

US

US

ISNo LiveIn

if (tone)

Need further moves

20

Only Need to Find Final Scopes and Move Once: Algorithm V3

int tmp;

tmp = 0;

DS

US

US

IS

if (tone)

…

tmp=g(i);

§ Find final scopes first
• scope_tree_worklist.push(scope_tree);
• while (!scope_tree_worklist.empty())

— current_scope_tree = scope_tree_worklist.front(); …
— collectCandidateTargetScopes(decl, current_scope_tree);

– if (is a bottom scope?)
• target_scopes.push_back(candidate)

– else
• scope_tree_worklist.push_back(candiate)

§ Then copy&move in one shot
• if (target_scopes.size()>0)

— copyMoveVariableDeclaration(decl, target_scopes);

21

Results

§ 230+ regression tests, with correctness verification (diff-based)
§ Applied to large-scale X,Y apps, very positive user feedback
§ Users kept requesting more features once previous requests were met

— merge moved declarations with immediately followed assignments
— transformation tracking, debugging support
— aggressive mode, keep-going mode, no-op mode, …

22

Rethinking the Success Metric of HPC

HPC = Highly Painful Computing
Sacrificing hours of hard human cycles for a few reduced machine cycles

Would some application teams really want to use the HPC software/hardware
systems we dump on them every 3-5 years, if they had choices??

Success(HPC) = f(FLOPs, Watt)

23

A New Holistic Success Metric for HPC as a Service

Success(HPC) =
f (Total_time, Quality_of_results, Total_cost, Context)
Total_time = the entire end-to-end, machine-human interaction time to get results

— Human_time = training, thinking_steps, keystrokes, mouse_clicks, cursor_travel_distance,
hairs_pulled_off, …

Quality_of_results:
— Correctness, accuracy, certainty/confidence, up-to-date …

Total_cost = Machine_cost + Human_cost
— Human cost tied to hourly rates: make HPC operable/usable by even cavemen

Context: under which conditions can HPC serve users (including cavemen)?
— Access devices (smartphones), Locations (AOE), Time (24x7), …

24

Benchmarking to Understand Quality of Tools

If You Can’t Measure it Correctly,
You Can’t Improve it

Regression positive/negative tests

https://github.com/LLNL/dataracebench

Metric Formula

Precision Confidence of true positive
P = TP/(TP + FP)

Recall Completeness of true positive
R = TP/(TP + FN)

Accuracy Chance of having a correct report
A = (TP +TN)/(TP + FP +TN + FN)

1. …
2. int i,x;
3. #pragma omp parallel for lastprivate (x)
4. for (i=0;i<100;i++)
5. { x=i; }
6. printf("x=%d",x);
7. …

lastprivate-orig-no.c

lastprivatemissing-orig-yes.c

1. …
2. int i,x;
3. #pragma omp parallel for
4. for (i=0;i<100;i++)
5. { x=i; }
6. printf("x=%d",x);
7. …

one data race pair
x@5 vs. x@5

https://github.com/LLNL/dataracebench

25

Evaluation Report

Compile-time seg. fault (CSF), Unsupported feature (CUN) Runtime seg. Fault (RSF), Runtime timeout (RTO)

26

Regression of Tools

IDs not shown are benchmarks that are correctly evaluated with every tool.

27

Tools as Services to Reduce Human Costs and to allow
more user context

Motivation
Hard to use individual tools
All individual tools have limitations

Solution
Compose tools as cloud-based services
Define APIs
Define JSON formats

RaceDetectionService: A Cloud-Based Metaservice for Detecting Data Races

28

Data Race Detection Service:
RESTful API and JSON

28

29

Preliminary results of RDS

29

30

Automatic Online Training: FreeCompilerCamp.org

Problem:
— Many tools requested by app teams
— But only limited FTEs available

Solution: automatic training and
certifying developers

— Modern Learning Management
Systems (LMS) + Adaptive
Learning/Assessement

— FreeCodeComp à FreeCompilerComp
— Interactive cloud-based playground for

learners: Play-with-Docker
Challenges and Solutions

Compilers : Parsing -> AST/IR -> Traversal (analysis) -> Transform (optimization) -> Runtime

31

FreeCompilerCamp Design

Training Website

Docker Image 1 Docker Image 2

...Container N...Container 1

1. Direct deployment
2. Git Pages1. Ubuntu

2. Alpine
3. ...

Isolated users

Tutorial 1 Tutorial 2

32

User interface

32

33

Takeaway Messages

ROSE: A source-to-source compiler framework for building tools for national security
applications

— tools for source code and binary: inliner, outliner, autopar, move tool, loop
processor …

— http://roseCompiler.org/
Tool Development

— Regression tests to reflect what users want (positive tests) and don’t want
(negative tests)

— Standard metrics to communicate incremental progress with sponsors and users
• Precision, Recall, Accuracy

— Commenting on issues of apps == commenting on issues of children in front of
their parents!

http://rosecompiler.org/

34

Takeaway Messages (Cont.)

Success(HPC)=f (Flops, Watt) è Highly Painful Computing for people
— Let’s refine the metric to include human factors together and make it Highly

Pleasant Computing
Doing my part to make HPC Highly Pleasant Computing

— Benchmarks: people love and hate benchmarks
• Best qualified people may not want to develop/release the best benchmarks

for their work
— Microservice design, docker, cloud,
— Online learning/certifying frameworks, ….

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Sponsored by DOE Office of Cybersecurity, Energy Security, and
Emergency Response, Department of Defense, and LLNL.

